ok github.com/google/syzkaller/dashboard/app (cached) ? github.com/google/syzkaller/dashboard/dashapi [no test files] ok github.com/google/syzkaller/executor 0.082s ok github.com/google/syzkaller/pkg/ast 1.297s ok github.com/google/syzkaller/pkg/bisect 15.985s ok github.com/google/syzkaller/pkg/build 5.701s ? github.com/google/syzkaller/pkg/cmdprof [no test files] ok github.com/google/syzkaller/pkg/compiler 2.834s ok github.com/google/syzkaller/pkg/config (cached) ok github.com/google/syzkaller/pkg/cover 2.142s ok github.com/google/syzkaller/pkg/csource 12.329s ok github.com/google/syzkaller/pkg/db (cached) ok github.com/google/syzkaller/pkg/email (cached) ? github.com/google/syzkaller/pkg/gce [no test files] ? github.com/google/syzkaller/pkg/gcs [no test files] ? github.com/google/syzkaller/pkg/hash [no test files] ok github.com/google/syzkaller/pkg/host 11.191s ? github.com/google/syzkaller/pkg/html [no test files] ok github.com/google/syzkaller/pkg/ifuzz (cached) ? github.com/google/syzkaller/pkg/ifuzz/gen [no test files] ? github.com/google/syzkaller/pkg/ifuzz/generated [no test files] ok github.com/google/syzkaller/pkg/instance 1.144s --- FAIL: TestExecutor (0.00s) --- FAIL: TestExecutor/arm (0.10s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } compiler invocation: arm-linux-gnueabi-gcc [-o /tmp/syz-executor493875923 -DGOOS_linux=1 -DGOARCH_arm=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -D__LINUX_ARM_ARCH__=6 -march=armv6 -O2 -pthread -Wall -Werror -Wparentheses -Wunused-const-variable -Wframe-larger-than=16384 -static -Wno-overflow] --- FAIL: TestExecutor/ppc64le (0.17s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } compiler invocation: powerpc64le-linux-gnu-gcc [-o /tmp/syz-executor209279510 -DGOOS_linux=1 -DGOARCH_ppc64le=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -D__powerpc64__ -O2 -pthread -Wall -Werror -Wparentheses -Wunused-const-variable -Wframe-larger-than=16384 -static] --- FAIL: TestExecutor/s390x (0.20s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } compiler invocation: s390x-linux-gnu-gcc [-o /tmp/syz-executor077810301 -DGOOS_linux=1 -DGOARCH_s390x=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -O2 -pthread -Wall -Werror -Wparentheses -Wunused-const-variable -Wframe-larger-than=16384 -static] --- FAIL: TestExecutor/riscv64 (0.22s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } compiler invocation: riscv64-linux-gnu-gcc [-o /tmp/syz-executor466365368 -DGOOS_linux=1 -DGOARCH_riscv64=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -O2 -pthread -Wall -Werror -Wparentheses -Wunused-const-variable -Wframe-larger-than=16384 -static] --- FAIL: TestExecutor/mips64le (0.29s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } compiler invocation: mips64el-linux-gnuabi64-gcc [-o /tmp/syz-executor352562615 -DGOOS_linux=1 -DGOARCH_mips64le=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -march=mips64r2 -mabi=64 -EL -O2 -pthread -Wall -Werror -Wparentheses -Wunused-const-variable -Wframe-larger-than=16384 -static] --- FAIL: TestExecutor/arm64 (0.31s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } compiler invocation: aarch64-linux-gnu-gcc [-o /tmp/syz-executor523214762 -DGOOS_linux=1 -DGOARCH_arm64=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -O2 -pthread -Wall -Werror -Wparentheses -Wunused-const-variable -Wframe-larger-than=16384 -static] --- FAIL: TestExecutor/386 (0.44s) ipc_test.go:30: failed to build program: // Copyright 2017 syzkaller project authors. All rights reserved. // Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file. // +build #include #include #include #include #include #include #include #include #include #include #include #include #include "defs.h" #if defined(__GNUC__) #define SYSCALLAPI #define NORETURN __attribute__((noreturn)) #define ALIGNED(N) __attribute__((aligned(N))) #define PRINTF(fmt, args) __attribute__((format(printf, fmt, args))) #else // Assuming windows/cl. #define SYSCALLAPI WINAPI #define NORETURN __declspec(noreturn) #define ALIGNED(N) __declspec(align(N)) #define PRINTF(fmt, args) #endif #ifndef GIT_REVISION #define GIT_REVISION "unknown" #endif #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) // uint64 is impossible to printf without using the clumsy and verbose "%" PRId64. // So we define and use uint64. Note: pkg/csource does s/uint64/uint64/. // Also define uint32/16/8 for consistency. typedef unsigned long long uint64; typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; // exit/_exit do not necessary work (e.g. if fuzzer sets seccomp filter that prohibits exit_group). // Use doexit instead. We must redefine exit to something that exists in stdlib, // because some standard libraries contain "using ::exit;", but has different signature. #define exit vsnprintf // Dynamic memory allocation reduces test reproducibility across different libc versions and kernels. // malloc will cause unspecified number of additional mmap's at unspecified locations. // For small objects prefer stack allocations, for larger -- either global objects (this may have // issues with concurrency), or controlled mmaps, or make the fuzzer allocate memory. #define malloc do_not_use_malloc #define calloc do_not_use_calloc // Note: zircon max fd is 256. // Some common_OS.h files know about this constant for RLIMIT_NOFILE. const int kMaxFd = 250; const int kMaxThreads = 16; const int kInPipeFd = kMaxFd - 1; // remapped from stdin const int kOutPipeFd = kMaxFd - 2; // remapped from stdout const int kCoverFd = kOutPipeFd - kMaxThreads; const int kMaxArgs = 9; const int kCoverSize = 256 << 10; const int kFailStatus = 67; // Logical error (e.g. invalid input program), use as an assert() alternative. static NORETURN PRINTF(1, 2) void fail(const char* msg, ...); // Just exit (e.g. due to temporal ENOMEM error). static NORETURN PRINTF(1, 2) void exitf(const char* msg, ...); static NORETURN void doexit(int status); // Print debug output that is visible when running syz-manager/execprog with -debug flag. // Debug output is supposed to be relatively high-level (syscalls executed, return values, timing, etc) // and is intended mostly for end users. If you need to debug lower-level details, use debug_verbose // function and temporary enable it in your build by changing #if 0 below. // This function does not add \n at the end of msg as opposed to the previous functions. static PRINTF(1, 2) void debug(const char* msg, ...); void debug_dump_data(const char* data, int length); #if 0 #define debug_verbose(...) debug(__VA_ARGS__) #else #define debug_verbose(...) (void)0 #endif static void receive_execute(); static void reply_execute(int status); #if GOOS_akaros static void resend_execute(int fd); #endif #if SYZ_EXECUTOR_USES_FORK_SERVER static void receive_handshake(); static void reply_handshake(); #endif #if SYZ_EXECUTOR_USES_SHMEM const int kMaxOutput = 16 << 20; const int kInFd = 3; const int kOutFd = 4; static uint32* output_data; static uint32* output_pos; static uint32* write_output(uint32 v); static uint32* write_output_64(uint64 v); static void write_completed(uint32 completed); static uint32 hash(uint32 a); static bool dedup(uint32 sig); #endif uint64 start_time_ms = 0; static bool flag_debug; static bool flag_coverage; static bool flag_sandbox_none; static bool flag_sandbox_setuid; static bool flag_sandbox_namespace; static bool flag_sandbox_android; static bool flag_extra_coverage; static bool flag_net_injection; static bool flag_net_devices; static bool flag_net_reset; static bool flag_cgroups; static bool flag_close_fds; static bool flag_devlink_pci; static bool flag_vhci_injection; static bool flag_collect_cover; static bool flag_dedup_cover; static bool flag_threaded; static bool flag_collide; // If true, then executor should write the comparisons data to fuzzer. static bool flag_comparisons; // Inject fault into flag_fault_nth-th operation in flag_fault_call-th syscall. static bool flag_fault; static int flag_fault_call; static int flag_fault_nth; #define SYZ_EXECUTOR 1 #include "common.h" const int kMaxInput = 4 << 20; // keep in sync with prog.ExecBufferSize const int kMaxCommands = 1000; const uint64 instr_eof = -1; const uint64 instr_copyin = -2; const uint64 instr_copyout = -3; const uint64 arg_const = 0; const uint64 arg_result = 1; const uint64 arg_data = 2; const uint64 arg_csum = 3; const uint64 binary_format_native = 0; const uint64 binary_format_bigendian = 1; const uint64 binary_format_strdec = 2; const uint64 binary_format_strhex = 3; const uint64 binary_format_stroct = 4; const uint64 no_copyout = -1; static int running; static bool collide; uint32 completed; bool is_kernel_64_bit = true; ALIGNED(64 << 10) static char input_data[kMaxInput]; // Checksum kinds. static const uint64 arg_csum_inet = 0; // Checksum chunk kinds. static const uint64 arg_csum_chunk_data = 0; static const uint64 arg_csum_chunk_const = 1; typedef intptr_t(SYSCALLAPI* syscall_t)(intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t, intptr_t); struct call_t { const char* name; int sys_nr; call_attrs_t attrs; syscall_t call; }; struct cover_t { int fd; uint32 size; char* data; char* data_end; }; struct thread_t { int id; bool created; event_t ready; event_t done; uint64* copyout_pos; uint64 copyout_index; bool colliding; bool executing; int call_index; int call_num; int num_args; intptr_t args[kMaxArgs]; intptr_t res; uint32 reserrno; bool fault_injected; cover_t cov; }; static thread_t threads[kMaxThreads]; static thread_t* last_scheduled; static cover_t extra_cov; struct res_t { bool executed; uint64 val; }; static res_t results[kMaxCommands]; const uint64 kInMagic = 0xbadc0ffeebadface; const uint32 kOutMagic = 0xbadf00d; struct handshake_req { uint64 magic; uint64 flags; // env flags uint64 pid; }; struct handshake_reply { uint32 magic; }; struct execute_req { uint64 magic; uint64 env_flags; uint64 exec_flags; uint64 pid; uint64 fault_call; uint64 fault_nth; uint64 prog_size; }; struct execute_reply { uint32 magic; uint32 done; uint32 status; }; // call_reply.flags const uint32 call_flag_executed = 1 << 0; const uint32 call_flag_finished = 1 << 1; const uint32 call_flag_blocked = 1 << 2; const uint32 call_flag_fault_injected = 1 << 3; struct call_reply { execute_reply header; uint32 call_index; uint32 call_num; uint32 reserrno; uint32 flags; uint32 signal_size; uint32 cover_size; uint32 comps_size; // signal/cover/comps follow }; enum { KCOV_CMP_CONST = 1, KCOV_CMP_SIZE1 = 0, KCOV_CMP_SIZE2 = 2, KCOV_CMP_SIZE4 = 4, KCOV_CMP_SIZE8 = 6, KCOV_CMP_SIZE_MASK = 6, }; struct kcov_comparison_t { // Note: comparisons are always 64-bits regardless of kernel bitness. uint64 type; uint64 arg1; uint64 arg2; uint64 pc; bool ignore() const; void write(); bool operator==(const struct kcov_comparison_t& other) const; bool operator<(const struct kcov_comparison_t& other) const; }; typedef char kcov_comparison_size[sizeof(kcov_comparison_t) == 4 * sizeof(uint64) ? 1 : -1]; struct feature_t { const char* name; void (*setup)(); }; static thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos); static void handle_completion(thread_t* th); static void copyout_call_results(thread_t* th); static void write_call_output(thread_t* th, bool finished); static void write_extra_output(); static void execute_call(thread_t* th); static void thread_create(thread_t* th, int id); static void* worker_thread(void* arg); static uint64 read_input(uint64** input_posp, bool peek = false); static uint64 read_arg(uint64** input_posp); static uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf, uint64* bf_off_p, uint64* bf_len_p); static uint64 read_result(uint64** input_posp); static uint64 swap(uint64 v, uint64 size, uint64 bf); static void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len); static bool copyout(char* addr, uint64 size, uint64* res); static void setup_control_pipes(); static void setup_features(char** enable, int n); #include "syscalls.h" #if GOOS_linux #include "executor_linux.h" #elif GOOS_fuchsia #include "executor_fuchsia.h" #elif GOOS_akaros #include "executor_akaros.h" #elif GOOS_freebsd || GOOS_netbsd || GOOS_openbsd #include "executor_bsd.h" #elif GOOS_windows #include "executor_windows.h" #elif GOOS_test #include "executor_test.h" #else #error "unknown OS" #endif #include "test.h" int main(int argc, char** argv) { if (argc == 2 && strcmp(argv[1], "version") == 0) { puts(GOOS " " GOARCH " " SYZ_REVISION " " GIT_REVISION); return 0; } if (argc >= 2 && strcmp(argv[1], "setup") == 0) { setup_features(argv + 2, argc - 2); return 0; } if (argc >= 2 && strcmp(argv[1], "leak") == 0) { #if SYZ_HAVE_LEAK_CHECK check_leaks(argv + 2, argc - 2); #else fail("leak checking is not implemented"); #endif return 0; } if (argc >= 2 && strcmp(argv[1], "setup_kcsan_filterlist") == 0) { #if SYZ_HAVE_KCSAN setup_kcsan_filterlist(argv + 2, argc - 2, true); #else fail("KCSAN is not implemented"); #endif return 0; } if (argc == 2 && strcmp(argv[1], "test") == 0) return run_tests(); start_time_ms = current_time_ms(); os_init(argc, argv, (char*)SYZ_DATA_OFFSET, SYZ_NUM_PAGES * SYZ_PAGE_SIZE); #if SYZ_EXECUTOR_USES_SHMEM if (mmap(&input_data[0], kMaxInput, PROT_READ, MAP_PRIVATE | MAP_FIXED, kInFd, 0) != &input_data[0]) fail("mmap of input file failed"); // The output region is the only thing in executor process for which consistency matters. // If it is corrupted ipc package will fail to parse its contents and panic. // But fuzzer constantly invents new ways of how to currupt the region, // so we map the region at a (hopefully) hard to guess address with random offset, // surrounded by unmapped pages. // The address chosen must also work on 32-bit kernels with 1GB user address space. void* preferred = (void*)(0x1b2bc20000ull + (1 << 20) * (getpid() % 128)); output_data = (uint32*)mmap(preferred, kMaxOutput, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_FIXED, kOutFd, 0); if (output_data != preferred) fail("mmap of output file failed"); // Prevent test programs to mess with these fds. // Due to races in collider mode, a program can e.g. ftruncate one of these fds, // which will cause fuzzer to crash. close(kInFd); close(kOutFd); #endif use_temporary_dir(); install_segv_handler(); setup_control_pipes(); #if SYZ_EXECUTOR_USES_FORK_SERVER receive_handshake(); #else receive_execute(); #endif if (flag_coverage) { for (int i = 0; i < kMaxThreads; i++) { threads[i].cov.fd = kCoverFd + i; cover_open(&threads[i].cov, false); cover_protect(&threads[i].cov); } cover_open(&extra_cov, true); cover_protect(&extra_cov); if (flag_extra_coverage) { // Don't enable comps because we don't use them in the fuzzer yet. cover_enable(&extra_cov, false, true); } } int status = 0; if (flag_sandbox_none) status = do_sandbox_none(); #if SYZ_HAVE_SANDBOX_SETUID else if (flag_sandbox_setuid) status = do_sandbox_setuid(); #endif #if SYZ_HAVE_SANDBOX_NAMESPACE else if (flag_sandbox_namespace) status = do_sandbox_namespace(); #endif #if SYZ_HAVE_SANDBOX_ANDROID else if (flag_sandbox_android) status = do_sandbox_android(); #endif else fail("unknown sandbox type"); #if SYZ_EXECUTOR_USES_FORK_SERVER fprintf(stderr, "loop exited with status %d\n", status); // Other statuses happen when fuzzer processes manages to kill loop, e.g. with: // ptrace(PTRACE_SEIZE, 1, 0, 0x100040) if (status != kFailStatus) status = 0; // If an external sandbox process wraps executor, the out pipe will be closed // before the sandbox process exits this will make ipc package kill the sandbox. // As the result sandbox process will exit with exit status 9 instead of the executor // exit status (notably kFailStatus). So we duplicate the exit status on the pipe. reply_execute(status); doexit(status); // Unreachable. return 1; #else reply_execute(status); return status; #endif } void setup_control_pipes() { if (dup2(0, kInPipeFd) < 0) fail("dup2(0, kInPipeFd) failed"); if (dup2(1, kOutPipeFd) < 0) fail("dup2(1, kOutPipeFd) failed"); if (dup2(2, 1) < 0) fail("dup2(2, 1) failed"); // We used to close(0), but now we dup stderr to stdin to keep fd numbers // stable across executor and C programs generated by pkg/csource. if (dup2(2, 0) < 0) fail("dup2(2, 0) failed"); } void parse_env_flags(uint64 flags) { // Note: Values correspond to ordering in pkg/ipc/ipc.go, e.g. FlagSandboxNamespace flag_debug = flags & (1 << 0); flag_coverage = flags & (1 << 1); if (flags & (1 << 2)) flag_sandbox_setuid = true; else if (flags & (1 << 3)) flag_sandbox_namespace = true; else if (flags & (1 << 4)) flag_sandbox_android = true; else flag_sandbox_none = true; flag_extra_coverage = flags & (1 << 5); flag_net_injection = flags & (1 << 6); flag_net_devices = flags & (1 << 7); flag_net_reset = flags & (1 << 8); flag_cgroups = flags & (1 << 9); flag_close_fds = flags & (1 << 10); flag_devlink_pci = flags & (1 << 11); flag_vhci_injection = flags & (1 << 12); } #if SYZ_EXECUTOR_USES_FORK_SERVER void receive_handshake() { handshake_req req = {}; int n = read(kInPipeFd, &req, sizeof(req)); if (n != sizeof(req)) fail("handshake read failed: %d", n); if (req.magic != kInMagic) fail("bad handshake magic 0x%llx", req.magic); parse_env_flags(req.flags); procid = req.pid; } void reply_handshake() { handshake_reply reply = {}; reply.magic = kOutMagic; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } #endif static execute_req last_execute_req; void receive_execute() { execute_req& req = last_execute_req; if (read(kInPipeFd, &req, sizeof(req)) != (ssize_t)sizeof(req)) fail("control pipe read failed"); if (req.magic != kInMagic) fail("bad execute request magic 0x%llx", req.magic); if (req.prog_size > kMaxInput) fail("bad execute prog size 0x%llx", req.prog_size); parse_env_flags(req.env_flags); procid = req.pid; flag_collect_cover = req.exec_flags & (1 << 0); flag_dedup_cover = req.exec_flags & (1 << 1); flag_fault = req.exec_flags & (1 << 2); flag_comparisons = req.exec_flags & (1 << 3); flag_threaded = req.exec_flags & (1 << 4); flag_collide = req.exec_flags & (1 << 5); flag_fault_call = req.fault_call; flag_fault_nth = req.fault_nth; if (!flag_threaded) flag_collide = false; debug("[%llums] exec opts: procid=%llu threaded=%d collide=%d cover=%d comps=%d dedup=%d fault=%d/%d/%d prog=%llu\n", current_time_ms() - start_time_ms, procid, flag_threaded, flag_collide, flag_collect_cover, flag_comparisons, flag_dedup_cover, flag_fault, flag_fault_call, flag_fault_nth, req.prog_size); if (SYZ_EXECUTOR_USES_SHMEM) { if (req.prog_size) fail("need_prog: no program"); return; } if (req.prog_size == 0) fail("need_prog: no program"); uint64 pos = 0; for (;;) { ssize_t rv = read(kInPipeFd, input_data + pos, sizeof(input_data) - pos); if (rv < 0) fail("read failed"); pos += rv; if (rv == 0 || pos >= req.prog_size) break; } if (pos != req.prog_size) fail("bad input size %lld, want %lld", pos, req.prog_size); } #if GOOS_akaros void resend_execute(int fd) { execute_req& req = last_execute_req; if (write(fd, &req, sizeof(req)) != sizeof(req)) fail("child pipe header write failed"); if (write(fd, input_data, req.prog_size) != (ssize_t)req.prog_size) fail("child pipe program write failed"); } #endif void reply_execute(int status) { execute_reply reply = {}; reply.magic = kOutMagic; reply.done = true; reply.status = status; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe write failed"); } // execute_one executes program stored in input_data. void execute_one() { // Duplicate global collide variable on stack. // Fuzzer once come up with ioctl(fd, FIONREAD, 0x920000), // where 0x920000 was exactly collide address, so every iteration reset collide to 0. bool colliding = false; #if SYZ_EXECUTOR_USES_SHMEM output_pos = output_data; write_output(0); // Number of executed syscalls (updated later). #endif uint64 start = current_time_ms(); retry: uint64* input_pos = (uint64*)input_data; if (flag_coverage && !colliding) { if (!flag_threaded) cover_enable(&threads[0].cov, flag_comparisons, false); if (flag_extra_coverage) cover_reset(&extra_cov); } int call_index = 0; uint64 prog_extra_timeout = 0; uint64 prog_extra_cover_timeout = 0; for (;;) { uint64 call_num = read_input(&input_pos); if (call_num == instr_eof) break; if (call_num == instr_copyin) { char* addr = (char*)read_input(&input_pos); uint64 typ = read_input(&input_pos); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 arg = read_const_arg(&input_pos, &size, &bf, &bf_off, &bf_len); copyin(addr, arg, size, bf, bf_off, bf_len); break; } case arg_result: { uint64 meta = read_input(&input_pos); uint64 size = meta & 0xff; uint64 bf = meta >> 8; uint64 val = read_result(&input_pos); copyin(addr, val, size, bf, 0, 0); break; } case arg_data: { uint64 size = read_input(&input_pos); size &= ~(1ull << 63); // readable flag NONFAILING(memcpy(addr, input_pos, size)); // Read out the data. for (uint64 i = 0; i < (size + 7) / 8; i++) read_input(&input_pos); break; } case arg_csum: { debug_verbose("checksum found at %p\n", addr); uint64 size = read_input(&input_pos); char* csum_addr = addr; uint64 csum_kind = read_input(&input_pos); switch (csum_kind) { case arg_csum_inet: { if (size != 2) fail("inet checksum must be 2 bytes, not %llu", size); debug_verbose("calculating checksum for %p\n", csum_addr); struct csum_inet csum; csum_inet_init(&csum); uint64 chunks_num = read_input(&input_pos); uint64 chunk; for (chunk = 0; chunk < chunks_num; chunk++) { uint64 chunk_kind = read_input(&input_pos); uint64 chunk_value = read_input(&input_pos); uint64 chunk_size = read_input(&input_pos); switch (chunk_kind) { case arg_csum_chunk_data: debug_verbose("#%lld: data chunk, addr: %llx, size: %llu\n", chunk, chunk_value, chunk_size); NONFAILING(csum_inet_update(&csum, (const uint8*)chunk_value, chunk_size)); break; case arg_csum_chunk_const: if (chunk_size != 2 && chunk_size != 4 && chunk_size != 8) { fail("bad checksum const chunk size %lld\n", chunk_size); } // Here we assume that const values come to us big endian. debug_verbose("#%lld: const chunk, value: %llx, size: %llu\n", chunk, chunk_value, chunk_size); csum_inet_update(&csum, (const uint8*)&chunk_value, chunk_size); break; default: fail("bad checksum chunk kind %llu", chunk_kind); } } uint16 csum_value = csum_inet_digest(&csum); debug_verbose("writing inet checksum %hx to %p\n", csum_value, csum_addr); copyin(csum_addr, csum_value, 2, binary_format_native, 0, 0); break; } default: fail("bad checksum kind %llu", csum_kind); } break; } default: fail("bad argument type %llu", typ); } continue; } if (call_num == instr_copyout) { read_input(&input_pos); // index read_input(&input_pos); // addr read_input(&input_pos); // size // The copyout will happen when/if the call completes. continue; } // Normal syscall. if (call_num >= ARRAY_SIZE(syscalls)) fail("invalid command number %llu", call_num); const call_t* call = &syscalls[call_num]; if (call->attrs.disabled) fail("executing disabled syscall %s", call->name); if (prog_extra_timeout < call->attrs.prog_timeout) prog_extra_timeout = call->attrs.prog_timeout; if (strncmp(syscalls[call_num].name, "syz_usb", strlen("syz_usb")) == 0) prog_extra_cover_timeout = 500; uint64 copyout_index = read_input(&input_pos); uint64 num_args = read_input(&input_pos); if (num_args > kMaxArgs) fail("command has bad number of arguments %llu", num_args); uint64 args[kMaxArgs] = {}; for (uint64 i = 0; i < num_args; i++) args[i] = read_arg(&input_pos); for (uint64 i = num_args; i < kMaxArgs; i++) args[i] = 0; thread_t* th = schedule_call(call_index++, call_num, colliding, copyout_index, num_args, args, input_pos); if (colliding && (call_index % 2) == 0) { // Don't wait for every other call. // We already have results from the previous execution. } else if (flag_threaded) { // Wait for call completion. // Note: sys/linux knows about this 45 ms timeout when it generates timespec/timeval values. // Note: pkg/csource also knows about this 45 ms per-call timeout. uint64 timeout_ms = 45 + call->attrs.timeout; if (flag_debug && timeout_ms < 1000) timeout_ms = 1000; if (event_timedwait(&th->done, timeout_ms)) handle_completion(th); // Check if any of previous calls have completed. for (int i = 0; i < kMaxThreads; i++) { th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } else { // Execute directly. if (th != &threads[0]) fail("using non-main thread in non-thread mode"); event_reset(&th->ready); execute_call(th); event_set(&th->done); handle_completion(th); } } if (!colliding && !collide && running > 0) { // Give unfinished syscalls some additional time. last_scheduled = 0; uint64 wait = 100; uint64 wait_start = current_time_ms(); uint64 wait_end = wait_start + wait; if (wait_end < start + 800) wait_end = start + 800; wait_end += prog_extra_timeout; while (running > 0 && current_time_ms() <= wait_end) { sleep_ms(1); for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing && event_isset(&th->done)) handle_completion(th); } } // Write output coverage for unfinished calls. if (running > 0) { for (int i = 0; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (th->executing) { if (flag_coverage) cover_collect(&th->cov); write_call_output(th, false); } } } } #if SYZ_HAVE_CLOSE_FDS close_fds(); #endif if (!colliding && !collide) { write_extra_output(); // Check for new extra coverage in small intervals to avoid situation // that we were killed on timeout before we write any. // Check for extra coverage is very cheap, effectively a memory load. const uint64 kSleepMs = 100; for (uint64 i = 0; i < prog_extra_cover_timeout / kSleepMs; i++) { sleep_ms(kSleepMs); write_extra_output(); } } if (flag_collide && !flag_fault && !colliding && !collide) { debug("enabling collider\n"); collide = colliding = true; goto retry; } } thread_t* schedule_call(int call_index, int call_num, bool colliding, uint64 copyout_index, uint64 num_args, uint64* args, uint64* pos) { // Find a spare thread to execute the call. int i = 0; for (; i < kMaxThreads; i++) { thread_t* th = &threads[i]; if (!th->created) thread_create(th, i); if (event_isset(&th->done)) { if (th->executing) handle_completion(th); break; } } if (i == kMaxThreads) exitf("out of threads"); thread_t* th = &threads[i]; if (event_isset(&th->ready) || !event_isset(&th->done) || th->executing) fail("bad thread state in schedule: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); last_scheduled = th; th->colliding = colliding; th->copyout_pos = pos; th->copyout_index = copyout_index; event_reset(&th->done); th->executing = true; th->call_index = call_index; th->call_num = call_num; th->num_args = num_args; for (int i = 0; i < kMaxArgs; i++) th->args[i] = args[i]; event_set(&th->ready); running++; return th; } #if SYZ_EXECUTOR_USES_SHMEM template void write_coverage_signal(cover_t* cov, uint32* signal_count_pos, uint32* cover_count_pos) { // Write out feedback signals. // Currently it is code edges computed as xor of two subsequent basic block PCs. cover_data_t* cover_data = ((cover_data_t*)cov->data) + 1; uint32 nsig = 0; cover_data_t prev = 0; for (uint32 i = 0; i < cov->size; i++) { cover_data_t pc = cover_data[i]; if (!cover_check(pc)) { debug("got bad pc: 0x%llx\n", (uint64)pc); doexit(0); } cover_data_t sig = pc ^ prev; prev = hash(pc); if (dedup(sig)) continue; write_output(sig); nsig++; } // Write out number of signals. *signal_count_pos = nsig; if (!flag_collect_cover) return; // Write out real coverage (basic block PCs). uint32 cover_size = cov->size; if (flag_dedup_cover) { cover_data_t* end = cover_data + cover_size; cover_unprotect(cov); std::sort(cover_data, end); cover_size = std::unique(cover_data, end) - cover_data; cover_protect(cov); } // Truncate PCs to uint32 assuming that they fit into 32-bits. // True for x86_64 and arm64 without KASLR. for (uint32 i = 0; i < cover_size; i++) write_output(cover_data[i]); *cover_count_pos = cover_size; } #endif void handle_completion(thread_t* th) { if (event_isset(&th->ready) || !event_isset(&th->done) || !th->executing) fail("bad thread state in completion: ready=%d done=%d executing=%d", event_isset(&th->ready), event_isset(&th->done), th->executing); if (th->res != (intptr_t)-1) copyout_call_results(th); if (!collide && !th->colliding) { write_call_output(th, true); write_extra_output(); } th->executing = false; running--; if (running < 0) { // This fires periodically for the past 2 years (see issue #502). fprintf(stderr, "running=%d collide=%d completed=%d flag_threaded=%d flag_collide=%d current=%d\n", running, collide, completed, flag_threaded, flag_collide, th->id); for (int i = 0; i < kMaxThreads; i++) { thread_t* th1 = &threads[i]; fprintf(stderr, "th #%2d: created=%d executing=%d colliding=%d" " ready=%d done=%d call_index=%d res=%lld reserrno=%d\n", i, th1->created, th1->executing, th1->colliding, event_isset(&th1->ready), event_isset(&th1->done), th1->call_index, (uint64)th1->res, th1->reserrno); } fail("running = %d", running); } } void copyout_call_results(thread_t* th) { if (th->copyout_index != no_copyout) { if (th->copyout_index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", th->copyout_index); results[th->copyout_index].executed = true; results[th->copyout_index].val = th->res; } for (bool done = false; !done;) { uint64 instr = read_input(&th->copyout_pos); switch (instr) { case instr_copyout: { uint64 index = read_input(&th->copyout_pos); if (index >= kMaxCommands) fail("result idx %lld overflows kMaxCommands", index); char* addr = (char*)read_input(&th->copyout_pos); uint64 size = read_input(&th->copyout_pos); uint64 val = 0; if (copyout(addr, size, &val)) { results[index].executed = true; results[index].val = val; } debug_verbose("copyout 0x%llx from %p\n", val, addr); break; } default: done = true; break; } } } void write_call_output(thread_t* th, bool finished) { uint32 reserrno = 999; const bool blocked = th != last_scheduled; uint32 call_flags = call_flag_executed | (blocked ? call_flag_blocked : 0); if (finished) { reserrno = th->res != -1 ? 0 : th->reserrno; call_flags |= call_flag_finished | (th->fault_injected ? call_flag_fault_injected : 0); } #if SYZ_EXECUTOR_USES_SHMEM write_output(th->call_index); write_output(th->call_num); write_output(reserrno); write_output(call_flags); uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later uint32* comps_count_pos = write_output(0); // filled in later if (flag_comparisons) { // Collect only the comparisons uint32 ncomps = th->cov.size; kcov_comparison_t* start = (kcov_comparison_t*)(th->cov.data + sizeof(uint64)); kcov_comparison_t* end = start + ncomps; if ((char*)end > th->cov.data_end) fail("too many comparisons %u", ncomps); cover_unprotect(&th->cov); std::sort(start, end); ncomps = std::unique(start, end) - start; cover_protect(&th->cov); uint32 comps_size = 0; for (uint32 i = 0; i < ncomps; ++i) { if (start[i].ignore()) continue; comps_size++; start[i].write(); } // Write out number of comparisons. *comps_count_pos = comps_size; } else if (flag_coverage) { if (is_kernel_64_bit) write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&th->cov, signal_count_pos, cover_count_pos); } debug_verbose("out #%u: index=%u num=%u errno=%d finished=%d blocked=%d sig=%u cover=%u comps=%u\n", completed, th->call_index, th->call_num, reserrno, finished, blocked, *signal_count_pos, *cover_count_pos, *comps_count_pos); completed++; write_completed(completed); #else call_reply reply; reply.header.magic = kOutMagic; reply.header.done = 0; reply.header.status = 0; reply.call_index = th->call_index; reply.call_num = th->call_num; reply.reserrno = reserrno; reply.flags = call_flags; reply.signal_size = 0; reply.cover_size = 0; reply.comps_size = 0; if (write(kOutPipeFd, &reply, sizeof(reply)) != sizeof(reply)) fail("control pipe call write failed"); debug_verbose("out: index=%u num=%u errno=%d finished=%d blocked=%d\n", th->call_index, th->call_num, reserrno, finished, blocked); #endif } void write_extra_output() { #if SYZ_EXECUTOR_USES_SHMEM if (!flag_coverage || !flag_extra_coverage || flag_comparisons) return; cover_collect(&extra_cov); if (!extra_cov.size) return; write_output(-1); // call index write_output(-1); // call num write_output(999); // errno write_output(0); // call flags uint32* signal_count_pos = write_output(0); // filled in later uint32* cover_count_pos = write_output(0); // filled in later write_output(0); // comps_count_pos if (is_kernel_64_bit) write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); else write_coverage_signal(&extra_cov, signal_count_pos, cover_count_pos); cover_reset(&extra_cov); debug_verbose("extra: sig=%u cover=%u\n", *signal_count_pos, *cover_count_pos); completed++; write_completed(completed); #endif } void thread_create(thread_t* th, int id) { th->created = true; th->id = id; th->executing = false; event_init(&th->ready); event_init(&th->done); event_set(&th->done); if (flag_threaded) thread_start(worker_thread, th); } void* worker_thread(void* arg) { thread_t* th = (thread_t*)arg; if (flag_coverage) cover_enable(&th->cov, flag_comparisons, false); for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th); event_set(&th->done); } return 0; } void execute_call(thread_t* th) { const call_t* call = &syscalls[th->call_num]; debug("#%d [%llums] -> %s(", th->id, current_time_ms() - start_time_ms, call->name); for (int i = 0; i < th->num_args; i++) { if (i != 0) debug(", "); debug("0x%llx", (uint64)th->args[i]); } debug(")\n"); int fail_fd = -1; if (flag_fault && th->call_index == flag_fault_call) { if (collide) fail("both collide and fault injection are enabled"); fail_fd = inject_fault(flag_fault_nth); } if (flag_coverage) cover_reset(&th->cov); // For pseudo-syscalls and user-space functions NONFAILING can abort before assigning to th->res. // Arrange for res = -1 and errno = EFAULT result for such case. th->res = -1; errno = EFAULT; NONFAILING(th->res = execute_syscall(call, th->args)); th->reserrno = errno; if (th->res == -1 && th->reserrno == 0) th->reserrno = EINVAL; // our syz syscalls may misbehave if (call->attrs.ignore_return) { th->res = 0; th->reserrno = 0; } if (flag_coverage) { cover_collect(&th->cov); if (th->cov.size >= kCoverSize) fail("#%d: too much cover %u", th->id, th->cov.size); } th->fault_injected = false; if (flag_fault && th->call_index == flag_fault_call) { th->fault_injected = fault_injected(fail_fd); } debug("#%d [%llums] <- %s=0x%llx errno=%d ", th->id, current_time_ms() - start_time_ms, call->name, (uint64)th->res, th->reserrno); if (flag_coverage) debug("cover=%u ", th->cov.size); if (flag_fault && th->call_index == flag_fault_call) debug("fault=%d ", th->fault_injected); debug("\n"); } #if SYZ_EXECUTOR_USES_SHMEM static uint32 hash(uint32 a) { a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } const uint32 dedup_table_size = 8 << 10; uint32 dedup_table[dedup_table_size]; // Poorman's best-effort hashmap-based deduplication. // The hashmap is global which means that we deduplicate across different calls. // This is OK because we are interested only in new signals. static bool dedup(uint32 sig) { for (uint32 i = 0; i < 4; i++) { uint32 pos = (sig + i) % dedup_table_size; if (dedup_table[pos] == sig) return true; if (dedup_table[pos] == 0) { dedup_table[pos] = sig; return false; } } dedup_table[sig % dedup_table_size] = sig; return false; } #endif template void copyin_int(char* addr, uint64 val, uint64 bf, uint64 bf_off, uint64 bf_len) { if (bf_off == 0 && bf_len == 0) { *(T*)addr = swap(val, sizeof(T), bf); return; } T x = swap(*(T*)addr, sizeof(T), bf); debug_verbose("copyin_int<%zu>: old x=0x%llx\n", sizeof(T), (uint64)x); #if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ const uint64 shift = sizeof(T) * CHAR_BIT - bf_off - bf_len; #else const uint64 shift = bf_off; #endif x = (x & ~BITMASK(shift, bf_len)) | ((val << shift) & BITMASK(shift, bf_len)); debug_verbose("copyin_int<%zu>: new x=0x%llx\n", sizeof(T), (uint64)x); *(T*)addr = swap(x, sizeof(T), bf); } void copyin(char* addr, uint64 val, uint64 size, uint64 bf, uint64 bf_off, uint64 bf_len) { debug_verbose("copyin: addr=%p val=0x%llx size=%llu bf=%llu bf_off=%llu bf_len=%llu\n", addr, val, size, bf, bf_off, bf_len); if (bf != binary_format_native && bf != binary_format_bigendian && (bf_off != 0 || bf_len != 0)) fail("bitmask for string format %llu/%llu", bf_off, bf_len); switch (bf) { case binary_format_native: case binary_format_bigendian: NONFAILING(switch (size) { case 1: copyin_int(addr, val, bf, bf_off, bf_len); break; case 2: copyin_int(addr, val, bf, bf_off, bf_len); break; case 4: copyin_int(addr, val, bf, bf_off, bf_len); break; case 8: copyin_int(addr, val, bf, bf_off, bf_len); break; default: fail("copyin: bad argument size %llu", size); }); break; case binary_format_strdec: if (size != 20) fail("bad strdec size %llu", size); NONFAILING(sprintf((char*)addr, "%020llu", val)); break; case binary_format_strhex: if (size != 18) fail("bad strhex size %llu", size); NONFAILING(sprintf((char*)addr, "0x%016llx", val)); break; case binary_format_stroct: if (size != 23) fail("bad stroct size %llu", size); NONFAILING(sprintf((char*)addr, "%023llo", val)); break; default: fail("unknown binary format %llu", bf); } } bool copyout(char* addr, uint64 size, uint64* res) { bool ok = false; NONFAILING( switch (size) { case 1: *res = *(uint8*)addr; break; case 2: *res = *(uint16*)addr; break; case 4: *res = *(uint32*)addr; break; case 8: *res = *(uint64*)addr; break; default: fail("copyout: bad argument size %llu", size); } __atomic_store_n(&ok, true, __ATOMIC_RELEASE);); return ok; } uint64 read_arg(uint64** input_posp) { uint64 typ = read_input(input_posp); switch (typ) { case arg_const: { uint64 size, bf, bf_off, bf_len; uint64 val = read_const_arg(input_posp, &size, &bf, &bf_off, &bf_len); if (bf != binary_format_native && bf != binary_format_bigendian) fail("bad argument binary format %llu", bf); if (bf_off != 0 || bf_len != 0) fail("bad argument bitfield %llu/%llu", bf_off, bf_len); return swap(val, size, bf); } case arg_result: { uint64 meta = read_input(input_posp); uint64 bf = meta >> 8; if (bf != binary_format_native) fail("bad result argument format %llu", bf); return read_result(input_posp); } default: fail("bad argument type %llu", typ); } } uint64 swap(uint64 v, uint64 size, uint64 bf) { if (bf == binary_format_native) return v; if (bf != binary_format_bigendian) fail("bad binary format in swap: %llu", bf); switch (size) { case 2: return htobe16(v); case 4: return htobe32(v); case 8: return htobe64(v); default: fail("bad big-endian int size %llu", size); } } uint64 read_const_arg(uint64** input_posp, uint64* size_p, uint64* bf_p, uint64* bf_off_p, uint64* bf_len_p) { uint64 meta = read_input(input_posp); uint64 val = read_input(input_posp); *size_p = meta & 0xff; uint64 bf = (meta >> 8) & 0xff; *bf_off_p = (meta >> 16) & 0xff; *bf_len_p = (meta >> 24) & 0xff; uint64 pid_stride = meta >> 32; val += pid_stride * procid; *bf_p = bf; return val; } uint64 read_result(uint64** input_posp) { uint64 idx = read_input(input_posp); uint64 op_div = read_input(input_posp); uint64 op_add = read_input(input_posp); uint64 arg = read_input(input_posp); if (idx >= kMaxCommands) fail("command refers to bad result %lld", idx); if (results[idx].executed) { arg = results[idx].val; if (op_div != 0) arg = arg / op_div; arg += op_add; } return arg; } uint64 read_input(uint64** input_posp, bool peek) { uint64* input_pos = *input_posp; if ((char*)input_pos >= input_data + kMaxInput) fail("input command overflows input %p: [%p:%p)", input_pos, input_data, input_data + kMaxInput); if (!peek) *input_posp = input_pos + 1; return *input_pos; } #if SYZ_EXECUTOR_USES_SHMEM uint32* write_output(uint32 v) { if (output_pos < output_data || (char*)output_pos >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *output_pos = v; return output_pos++; } uint32* write_output_64(uint64 v) { if (output_pos < output_data || (char*)(output_pos + 1) >= (char*)output_data + kMaxOutput) fail("output overflow: pos=%p region=[%p:%p]", output_pos, output_data, (char*)output_data + kMaxOutput); *(uint64*)output_pos = v; output_pos += 2; return output_pos; } void write_completed(uint32 completed) { __atomic_store_n(output_data, completed, __ATOMIC_RELEASE); } #endif #if SYZ_EXECUTOR_USES_SHMEM void kcov_comparison_t::write() { if (type > (KCOV_CMP_CONST | KCOV_CMP_SIZE_MASK)) fail("invalid kcov comp type %llx", type); // Write order: type arg1 arg2 pc. write_output((uint32)type); // KCOV converts all arguments of size x first to uintx_t and then to // uint64. We want to properly extend signed values, e.g we want // int8 c = 0xfe to be represented as 0xfffffffffffffffe. // Note that uint8 c = 0xfe will be represented the same way. // This is ok because during hints processing we will anyways try // the value 0x00000000000000fe. switch (type & KCOV_CMP_SIZE_MASK) { case KCOV_CMP_SIZE1: arg1 = (uint64)(long long)(signed char)arg1; arg2 = (uint64)(long long)(signed char)arg2; break; case KCOV_CMP_SIZE2: arg1 = (uint64)(long long)(short)arg1; arg2 = (uint64)(long long)(short)arg2; break; case KCOV_CMP_SIZE4: arg1 = (uint64)(long long)(int)arg1; arg2 = (uint64)(long long)(int)arg2; break; } bool is_size_8 = (type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8; if (!is_size_8) { write_output((uint32)arg1); write_output((uint32)arg2); } else { write_output_64(arg1); write_output_64(arg2); } } bool kcov_comparison_t::ignore() const { // Comparisons with 0 are not interesting, fuzzer should be able to guess 0's without help. if (arg1 == 0 && (arg2 == 0 || (type & KCOV_CMP_CONST))) return true; if ((type & KCOV_CMP_SIZE_MASK) == KCOV_CMP_SIZE8) { // This can be a pointer (assuming 64-bit kernel). // First of all, we want avert fuzzer from our output region. // Without this fuzzer manages to discover and corrupt it. uint64 out_start = (uint64)output_data; uint64 out_end = out_start + kMaxOutput; if (arg1 >= out_start && arg1 <= out_end) return true; if (arg2 >= out_start && arg2 <= out_end) return true; #if defined(GOOS_linux) // Filter out kernel physical memory addresses. // These are internal kernel comparisons and should not be interesting. // The range covers first 1TB of physical mapping. uint64 kmem_start = (uint64)0xffff880000000000ull; uint64 kmem_end = (uint64)0xffff890000000000ull; bool kptr1 = arg1 >= kmem_start && arg1 <= kmem_end; bool kptr2 = arg2 >= kmem_start && arg2 <= kmem_end; if (kptr1 && kptr2) return true; if (kptr1 && arg2 == 0) return true; if (kptr2 && arg1 == 0) return true; #endif } return false; } bool kcov_comparison_t::operator==(const struct kcov_comparison_t& other) const { // We don't check for PC equality now, because it is not used. return type == other.type && arg1 == other.arg1 && arg2 == other.arg2; } bool kcov_comparison_t::operator<(const struct kcov_comparison_t& other) const { if (type != other.type) return type < other.type; if (arg1 != other.arg1) return arg1 < other.arg1; // We don't check for PC equality now, because it is not used. return arg2 < other.arg2; } #endif void setup_features(char** enable, int n) { // This does any one-time setup for the requested features on the machine. // Note: this can be called multiple times and must be idempotent. #if SYZ_HAVE_FEATURES // Note: this is not executed in C reproducers. setup_machine(); #endif for (int i = 0; i < n; i++) { bool found = false; #if SYZ_HAVE_FEATURES for (unsigned f = 0; f < sizeof(features) / sizeof(features[0]); f++) { if (strcmp(enable[i], features[f].name) == 0) { features[f].setup(); found = true; break; } } #endif if (!found) fail("unknown feature %s", enable[i]); } } void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(kFailStatus); } void exitf(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit(0); } void debug(const char* msg, ...) { if (!flag_debug) return; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fflush(stderr); } void debug_dump_data(const char* data, int length) { if (!flag_debug) return; int i = 0; for (; i < length; i++) { debug("%02x ", data[i] & 0xff); if (i % 16 == 15) debug("\n"); } if (i % 16 != 0) debug("\n"); } In file included from /usr/include/c++/5/algorithm:60:0, from ../../executor/executor.cc:6: /usr/include/c++/5/utility:68:28: fatal error: bits/c++config.h: No such file or directory compilation terminated. compiler invocation: x86_64-linux-gnu-gcc [-o /tmp/syz-executor036144385 -DGOOS_linux=1 -DGOARCH_386=1 -DHOSTGOOS_linux=1 ../../executor/executor.cc -m32 -O2 -pthread -Wall -Werror -Wparentheses -Wframe-larger-than=16384 -static -Wno-overflow] FAIL FAIL github.com/google/syzkaller/pkg/ipc 5.224s ? github.com/google/syzkaller/pkg/ipc/ipcconfig [no test files] ok github.com/google/syzkaller/pkg/kd (cached) ok github.com/google/syzkaller/pkg/log (cached) ok github.com/google/syzkaller/pkg/mgrconfig (cached) ok github.com/google/syzkaller/pkg/osutil (cached) ok github.com/google/syzkaller/pkg/report (cached) ok github.com/google/syzkaller/pkg/repro (cached) ? github.com/google/syzkaller/pkg/rpctype [no test files] ok github.com/google/syzkaller/pkg/runtest 23.231s ok github.com/google/syzkaller/pkg/serializer (cached) ? github.com/google/syzkaller/pkg/signal [no test files] ok github.com/google/syzkaller/pkg/symbolizer 0.272s ok github.com/google/syzkaller/pkg/vcs 3.268s ok github.com/google/syzkaller/prog (cached) ok github.com/google/syzkaller/prog/test (cached) ? github.com/google/syzkaller/sys [no test files] ? github.com/google/syzkaller/sys/akaros [no test files] ? github.com/google/syzkaller/sys/akaros/gen [no test files] ? github.com/google/syzkaller/sys/freebsd [no test files] ? github.com/google/syzkaller/sys/freebsd/gen [no test files] ? github.com/google/syzkaller/sys/fuchsia [no test files] ? github.com/google/syzkaller/sys/fuchsia/fidlgen [no test files] ? github.com/google/syzkaller/sys/fuchsia/gen [no test files] ? github.com/google/syzkaller/sys/fuchsia/layout [no test files] ok github.com/google/syzkaller/sys/linux (cached) ? github.com/google/syzkaller/sys/linux/gen [no test files] ? github.com/google/syzkaller/sys/netbsd [no test files] ? github.com/google/syzkaller/sys/netbsd/gen [no test files] ok github.com/google/syzkaller/sys/openbsd (cached) ? github.com/google/syzkaller/sys/openbsd/gen [no test files] ? github.com/google/syzkaller/sys/syz-extract [no test files] ? github.com/google/syzkaller/sys/syz-sysgen [no test files] ? github.com/google/syzkaller/sys/targets [no test files] ? github.com/google/syzkaller/sys/test [no test files] ? github.com/google/syzkaller/sys/test/gen [no test files] ? github.com/google/syzkaller/sys/trusty [no test files] ? github.com/google/syzkaller/sys/trusty/gen [no test files] ? github.com/google/syzkaller/sys/windows [no test files] ? github.com/google/syzkaller/sys/windows/gen [no test files] ok github.com/google/syzkaller/syz-ci (cached) ok github.com/google/syzkaller/syz-fuzzer (cached) ok github.com/google/syzkaller/syz-hub (cached) ok github.com/google/syzkaller/syz-hub/state (cached) ? github.com/google/syzkaller/syz-manager [no test files] ? github.com/google/syzkaller/tools/syz-benchcmp [no test files] ? github.com/google/syzkaller/tools/syz-bisect [no test files] ? github.com/google/syzkaller/tools/syz-check [no test files] ? github.com/google/syzkaller/tools/syz-cover [no test files] ? github.com/google/syzkaller/tools/syz-crush [no test files] ? github.com/google/syzkaller/tools/syz-db [no test files] ? github.com/google/syzkaller/tools/syz-execprog [no test files] ? github.com/google/syzkaller/tools/syz-expand [no test files] ? github.com/google/syzkaller/tools/syz-fmt [no test files] ? github.com/google/syzkaller/tools/syz-hubtool [no test files] ? github.com/google/syzkaller/tools/syz-imagegen [no test files] ok github.com/google/syzkaller/tools/syz-linter 2.391s ? github.com/google/syzkaller/tools/syz-make [no test files] ? github.com/google/syzkaller/tools/syz-mutate [no test files] ? github.com/google/syzkaller/tools/syz-prog2c [no test files] ? github.com/google/syzkaller/tools/syz-reporter [no test files] ? github.com/google/syzkaller/tools/syz-repro [no test files] ? github.com/google/syzkaller/tools/syz-reprolist [no test files] ? github.com/google/syzkaller/tools/syz-runtest [no test files] ? github.com/google/syzkaller/tools/syz-showprio [no test files] ? github.com/google/syzkaller/tools/syz-stress [no test files] ? github.com/google/syzkaller/tools/syz-symbolize [no test files] ? github.com/google/syzkaller/tools/syz-testbuild [no test files] ? github.com/google/syzkaller/tools/syz-trace2syz [no test files] ok github.com/google/syzkaller/tools/syz-trace2syz/parser (cached) ok github.com/google/syzkaller/tools/syz-trace2syz/proggen (cached) ? github.com/google/syzkaller/tools/syz-tty [no test files] ? github.com/google/syzkaller/tools/syz-upgrade [no test files] ? github.com/google/syzkaller/tools/syz-usbgen [no test files] ok github.com/google/syzkaller/vm (cached) ? github.com/google/syzkaller/vm/adb [no test files] ? github.com/google/syzkaller/vm/bhyve [no test files] ? github.com/google/syzkaller/vm/gce [no test files] ? github.com/google/syzkaller/vm/gvisor [no test files] ok github.com/google/syzkaller/vm/isolated (cached) ? github.com/google/syzkaller/vm/kvm [no test files] ? github.com/google/syzkaller/vm/odroid [no test files] ? github.com/google/syzkaller/vm/qemu [no test files] ok github.com/google/syzkaller/vm/vmimpl (cached) ? github.com/google/syzkaller/vm/vmm [no test files] FAIL