program: r0 = syz_mount_image$bcachefs(&(0x7f0000000000), &(0x7f0000000100)='./file0\x00', 0x2a18414, &(0x7f0000000240)=ANY=[], 0x1, 0xf611, &(0x7f00000061c0)="$eJzs2QlUjt+j9/+7OUKDqSgVFRIipTJFKkQDpagUhVBCypgUGhDKlEiG0ISKJGkQIoWkCRGFypgGRPRfv9/DOb/zfX7f5zzne9Y5Z/3X836tda99731d92fva1/b5d7dAgAAAADA/xPyt3l/tuhjcidwYav/lCueAQIpkb+3S/4+QeZXufZ/aoT47yQhKv/38o/rIv6yevn+dFOngBlN36233rt55fwx2UcRxpMT2iwbn2fndvx7ub/Xk+a/1oVahQSCreOdPwffLOz9tzYhgUAgIiSzWSCQFZK7Kfu3qkDuXyO0vwkEArdfle5/yM9o1Vn0tzJgh8S/aZf+w3ms9/+3Sf5aZ8I62cE1J03TUk2NPtd7pxpu/tdThP52zuVf60kg6Obyx88L/5PcBa7umprLFq47rpVQ5/y+t3tC9LRZg+zsz3bp5HQ0dG3EiJiQZzbzh1zoLCYQCDr9ev3N79Uq/7vzX6WVQCDo/A/5+v/OdfX/v7z+YX9SV/5Viv8qpf6dnN/HVf9Q/+PcCP3J58X+UHb9d/r7z/pn9+yf+bPx/kd1+S/K/ffyfl/n78dY5q9S8z+YL/L7JSQQFhKI/kt3HkL/ukYE/3DfhARCf7+Xkv9SF/57Xfgfxiv2b8cv9Ie68B/qImJ/uK6/9/troYkICf3b9t/n/aH99zyI/mpX/cdn/T8x60/aFX6Vkr/+oX79XRf88c3/IvW/vfmX6/q73+Nq/D+M5b+D8D88g/5Z+7/c+F834/flSAnJ/W+f6fgnfh8THd7lcLCMqIXMn4xDKFnoV77Q3/v8j+YLi7dcn2ukoin/Z/kuwr/yhf9S/ug5wRtX3/fX+NP8Pb/zRf5S/ovE0zXu8iF9/3R+Gn/Pj+hfyh+o2y9I8p68/KA/yz/2O1/yL+VrvD3TlHUvsPxPx6/9e346/R/zhf/Qz+9jHo1dF3seW1nxp/mC3/md/9L4J+yodzeKe7r3T/Nzf8+PlEDlL+SnH7aolphx45L2n+UX/87v+pfGPzRw4HfTbaZj/nR9Gv2eH5m/lC8zfaXr42UigX/27BTa/H/7PywA4J/p/us7Vsiv+l/dp/5n/cN+IVJG6H99D+zy6/VfuVf7Wz/d/gvzAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD//2DV0aISdM/RO0VUac2DxsSdh+vNfGwCe6wT/XVcQlQg+Nv7J8ICwTOJHZello8aL50z/NCT263JehtOvpJoe65f61ckHR5ce8Eq8Z1+sV3OgM+dEp0Gnx0TV+gSW/LKwVepQ+v9ANOqJY8Ee2KVMgTTVa54dwlbGO1e8Cz1SPPTW4k/d1cff1it4GYq05JvLBMf/yPuQmqA6Lqx3gVrbHO+lHsuzZfUTZ1/cayYZ3pNuv3cslXnBixT9F2yoGbq9MF31pX/7Fci5mg6PGuh1fXYYUO+zuvjeNt09UyRXbNKv35Yk7d2Z5WbXFjxp+HqOSXhwX6FThfcCzc+eV+yR0m5dur6rAVFXy4nThfcDd/j53zKUcbGrGvwT69zxyrqD260aOuvoXxsR+2mAa1lw7f2LJpqPPDgTSnvgBl6ebJ3P8rHOQ4c9XpF7sjsJ4GLe+yY5Rmsdarp0a9J85q2qNreTjHoo9ro8A67Dpt38x+nvJJYeeTCndiU7ZL2qUpPNp8T0q9b9z1zcf+Vzxr8LKZa9vex+q5ud+Swh8Nx97ZF8ckqg2p+pAfNvGkU+tYw4FnnglGOYSev6Fp96/5EdV8nVXuT2rZe+X1dgp9lXh8S0z9M5NU42cv7m9wS4g7J/ci/mKySHOfnctaqpcv80gdf1X2unawKVXi3NHC+9Gg/b7GoN2KSZWfv333o9Sn36KunhU/9jK5JTTpbp+uhpBs/qMnyZnKUWX7J4Vs11kphHwcOywmRXKZXI3qzoSTB5u670LmfhJa77TlwTO3EvcCYs1WZIiE6M031n7+aMkdaXNRKVGtgio7mDDPZEoeSfhY9KvyNhAwUC6RLErPm150+YpOdfDE4IVlmsuzLue83Hfmx7fzEOzYPLj+W3pGVINBpn/n6sLx3i17378McswJyF8R/cXM+etJpxcRvZ8qPXg1Zml4auGK4jUjq+I+aFh718hpuiqUnI5fpKa+UDlm2r2/wzxvStlMUIru7Zj/feGFP337lG0dcnjirs8PMfRZ7M126KGvofH7c4bB08RWvB+pfkh8Hut5Vnvb8uptk8/oX34WON3YpfCV0LTbY68mPbtWNyoK++8psTgdOO6Z84MxUl8KZUTnP1aRTksfIXPR2Gn8vslOZhPDu4i73NM71cM0WVRS/lHJbs2n/LMGZFVevur2KvqVpLL5R/aB41XjXzp8eeY8d2zhvbTdjjXODZ9zXrgmJcgtWsijLb1u01e+5t8M6zSL/nC8uYk2qSy6McX39pWNE/AZDj3vWes3lX+85dOkxIfDA24mdxj574G1RG7vyQoZMqXfbmchBZmsqg+5XHHgY2/dNbpCW8bCO7beXCRW27Hq7WmH9m5j0zweWe2bMG6a8duqpWUldU5VTZdZOP2G/MOpS/1m94gI+bFpQceLzeJ+lvqWdPrpsflof+nn0ynWlY0wOL7jfeiYx4vOdsULbD7oL99FzFI9pK8o5ra+0q6Fk4QbXQ3JGHU/XHUp+lN17YUj4C5F7g5UedRRrTtAWXX1xxuX1+zb5vJRrl+6ks+ZS6NEyqx3xL+Rknm/rWxd9b07G/n36l2ZfNfE6ELvh8z61g486X6w/YndH9uj5SQXLL06N1tXr9/Gz7tBApSGZ9V3jyzo2bpqzVGPyxIbrIzb3T9cQGXrtVLvO2gPDF/V6ay01c+Ki86te/nST1Wq4vlQy4kP9poa8lu5689/+KC56eN5FX/PSsWkiox5Ybul8WHhN1beJK+WqfE+fll0o93HvkkfCgfajTRyOpNm2ZN6LzNh6eEnQfNnWGQEWIzY9WjVrR0qSg8BZql3h0OBCoZnGb8+tN7bv06jqG3hrbFZz7Z6UrjL7r+Tdnhv6dIGz5RyDQ6P8TPod2ltyd8SWUC3RMwUb31SE3XIsHpYWc8bPW2ZsuJvrUx1z2xfyQ99ZvKwaobGyNLmuV1xl6b4Q4TN34+RmTvOdftVm017TYz7vopxrMtVjrI4tSupxfsJBqVfLVzZJXBg4eXd91havlsi2A6r7nXy3Nyur5NUdjbyttubK53MrZ/a5rnNx9qNtuRbDO25nx87sOz3Sr3H9zUmhwsJe+fHL7yhHuEzU7ed/fKlg//LpnRY8XONtqvipa5VZsEi2m5F31p7psW4PI99PuK89xj5iZIDRoVkSGwavvKC6xmmIodtL7xFXfD/7LXC0W1KX1eGY/OBhqLRXroxVwfB236eDCxtHG6pWXtq4oNxRaW730BftZxp7Bd070Tfp86oazx758zrpGkhKBJzSfVLTI856zhn5NU05Qv6i/h5xElaJUYm5gdc8PRO2JunN7xCrtn7kFbW6sTDYaL9m/miTE+99dJWV+kgZHt4y53KMW3iIrNY+ufq2sd3ytK6aCQ9N7R71SPXI6dD6h4tf1EnOeTmt7t54/RXvF3dp/Cg1/dNAtVjFey++bRn7tKWyi/+8yLUXV9y//GrYAoHMEr1a9+dP2lwevv2mlOalkJetLD6x5OD8ntImKlovTSfeN++9wWTC0OFPVhbXvBVueCNzauORjvM25cVn+noVt9/0XSviPnqM53uPtiPuYcPeZCwLCi0sCG+LkrhTPi9Bam5rtwaZ6dcmb9lqG37EQCZybeKL1A1hRSn9LrkMFuvYrVGaatYs83rLUPUPlz6/3lY9yvTY8qdG+YX7ZpbsnyJ+91lYwZnEPi9ejRw6NyvJPcpv7Zxu0tc+FdhUppz+EKm0xmy8XWbJnF2Rt6/ODg8bGn22z5ntyZPyTH72F1r0snW9215FZz3tZZ13i9fc1qttN2l6lirp3GOt4F1szcDXWaJpV7ckOtSf/eHcvSiwzqmL+9l9Q1YPS5M7ptI7tmyTktXS8Ye1I0ICBh8N/Sl/7uMkE4HpW42Lj2e8Fw+PXdZjUNwe2YHX3eZMKrptppCle7VixzTzDSmrVMaOWHvZuE7YN9xZ9Z1M+BehHguaRo+V+mSle+vtgMsaOdbn7d8VG/c2Dus9eIfmJB/vtb0y9hTK+jrs3TJZLeNJ5vUZFmfXyl3RmjZsrahRm4/U1jJLxeFBAbdt075sH+grHNlNbcbp5vZxJkmRKzZJWfeqiVYzOzph0TrLpH7PH3XLsbR6J27X0Xrq4aYbQ32+fFFWa7tSL+61Ilz9zag9b5YYB+x30hLtpTe7v3fE4ROa52V3yNq1Log4uPi2g3ZuuVjjldZxqmuW7j6yo6GHxaABJWmZOccXJXZZpjt1WaV19azUrx0iAkFa58UvRzVeO2c11fZCRoj43bPdTWrsXg9aVWzbMaBy56fWUv+JpvEtH8t7i6dX2lfet3xnEp0kq6tm7aCzefdz+0GbHY0n/Pwukt0S4OG1++AE0+WL42dKJri5jR2XNMfZK8Mz1nfwgYkH5h9dMfhmp+I3gauX/lDw3KQotq23i6H6j71iQyZFnBKxEP/ac7C96wyhBbl11yseTyuYFaH6LuTtk5nrRZO6vFL5aii35ETY3oBhV+QPWC9euTxJfdTI7AzXmEk6H84YWla+2K51OL7njf2zy4X8dSLfzJzYFDLjVsXm9aueZcj77jnmXKv+SFqvrU+Vss6jfk72XpYxQ1oj/Tdclh5yWHFZuehenQ8lQ2UrTEsbf3aT25x2wkpPySB1iGNS5U9zS7GIPQpWvoFxH5Ueijj0CZt551oP/zFVp8+tdina5aIZ1uqcJr3fduDZgL63zc5MvdQud0Bcbfxlp61JeYr1MeclFIav0lBd2GZ1qX21bfGeSz6hSUX6035MSZluFisrfdpm6fgWt25p7Rd3KToYZik+s5vb68fgvqoX90eu0dAJuzn7zQOZdaW9DELtvYymGH/R2yt56HOwUOt7waD6cw7qm3eJGNrKvTf5ON8ofsbBuMMKm+ZVLL7+fug+l/2XHRat3vVy6B0tixUT75lMGTHrvm6G7vpdP9ecq6xVSzrW6ef7nirVS2pG9dAPmDuhdFPSW61ov0FXXk+sKpx8sXXirXvT3b+ozxQvGrdv9rqOC8O+ppnMUzIKMSkw8z06qfn8R7vvcspr7jfr7PZ/drNJbdyn06r7ouSe71X48dX0ZVeJaVK/vgmeN1d9bd/t61jzvHS9aZ8+btuoq9K8/+LrQJuIZ8OCWrdeWjc+/VTizAaLwq43zRcu6pW+KNv83mvtBdEmdqOPzVtjE3Jf06jnVofbhyM+GBU5j496IPd1ttMQlxap73X121PPDk5ZeDdn/qmRS00adeWHDZ3o5Rr0rPbBKu0Vg/KeOAd+ie+20NL3ReVjlYI9byZ2BJvX9Vd9teSjiPiKoedyrB5MGHhJuvzBi8kbr1/aaq4RffvMWIVnqqPmm3vG2S4cpdmmcuO1mnInp/HnvULXTwqedKL6x9WNJ3pbd3mr/UM0fNb9y63nNFxmqh9uf2ge+dzLeprPoX5ucW+VNxu2ODy9F9W7b8vAiPgp2s0BI3XSk2L0sgtz73jMX5atUJb7Kv1p0CuR3RO0LL51mqU2LsC9v8eVXdM3GgttsHUVDZp1TrqpY6qS7KaeKxJjLRdcemdpqdAvYWTvwtDOZ0s6iU3yObLA/4OM+runC8/uCRZvf22gN11tlnicetlXqX16z2O37cuui38dZz/QfcjKQcsqtLNtFqstlNWL8OrZHCws96NlwnA7nQPbnjSffW1+4WT1RKfoWdmbRGOa3bpknLOwzp0dssRqgkfcFR21Y/1G7XW7612037wmRVdn5ouzTS2K7T9/bipIkTs87+OJSX0iEzzEhttu2NSs6LFda+GHeO2x8R+SzvsNCbp87FHmyOAWqeM3jstEFWtHBN3+4WryutMkd4lezj++3VAx+bqxSbJPjGvRLoP1Vou/Ww1e/zToRVrm7BaDwlyRzYWLU4eNyy948W38uVvDH7iGdngeHvy1j+2x5EePumyNP5S8v1H0+umX18+9bdNSUfLp0LH06JKzIGyJeM25ya/PWfn8VKka9y7nkV1hq2vLc5thvl6TjxQdX5jXcWiG9oafxZsvBGQ5ZqV9cEwp3WJXXdQg1OnA+rIRHRKFpxYUN0iGn7kxsdPP6rf3nAoGFljHzLjXVuWY8qnO8bjm3cl33t6Qm7Lrju7gtzomShIDnRKWBq/w0d9Sl6Z6cprBxsjdyieGro+LXLY6vv8KX4H0NMlPgQqLd7gsX+XVusS4r9HVbRvSnzbNlaxXnBi4P2DaK5se/mPmSAl/HfTo6mv1y30lRvbea/Um92D8pUpRw71Jfet7HJr85VT/yHc3HKdtmth7+U+VkyE39x2VFvW2TNQ1VKj2M7o9c5249sdg45PjjshuVnaPFFHz2Gh/47r0j+CqZOPpvW75G6/eoDk1WPhbt7p5PSIcRvSertzTxnyz4+19rz7s7mg8H/78Z/WAko9S/jEG/bWDuqtMETbSEHvSNml3tMzOBr+x6wwGHg3TfL1hYeDwTzbD5zsvT5pYJR83b5xS7xc5cYJOPgUJAzqs6rTfmfi01ohaL34XsGXS0taKJ+8TruQuWmTnYzJp3pup1YfUOtRq4tZOtHTRGvTg5vqMTxnDHLpPvXZELd05cY346OM3x6yonRHTfVxMX/OkjakrRC0+1FvrT3Deu8dIfOfBhXdHZ2kc//ak85FIX58xMWYyZ0y9y9qWPG+WtNxod9zz6rp1LoeWehQs3W75YkJoTbe8Lj2b3gsMo3rd8fX5mXtlZ9DxOffU/L1NBy7Z61W/QL/TgTONZdqiU7o97TrGztjeWPKVq+j7g4Wx0aoShhKl79vX1b4Ll14rfV7yrHPCu+ntHUq9z1kUhWVfun7aIdXngtzEW9PXp/jFP5SZefX4A32HC59uzyiIEY3QvXNS2/ptWc/2wmNXx2xKbXR7PXWqw+b5y81vG40bH6zRUb7RUXVkT7/65PLjdVKe4x1Sqz+mH+3+acG4MD9Py8qWhf33rkr8pjfx0sZJbyqsPkQ7fP9pfnCyYZ6duapkhUd4j/sKVc9ejDY0dTk78/CL2Q8Fvp1uT7726p5It2TTGruwGf5hg3cGZmefsNodsK0s8/GlPR2OgR/Xqq5dcmFsU6vPwpJjO1ZN1nDVPNNm4Hb/dvn464JVUkWOnhpyUqNbFLaqbp1afXb+kddvOrZahb1OL4/b3Lv5x6HW6N7Hs7Uy7ggr1oxxLHNMypcNj42177ny6JEuFhe7qySI7coZoWroa6ivEV9/ukPs+MQdjR+/F3qrnKgwNRio/H6gXp+tG3RfDO5z//rFq7vupwtrVZh3yTrdVNJYozHl5svoiKnfXT1LdFM+Jge2drZ7v6jvSa8R+ptz1uxzVm0c2ytzbv67jU6D5GydXmxJHBXWMWLrjH39pxU3vn9Y5yCe0Ga5W/5ujnQ/EflPa2YlDzdXiPdYE2j9Mkh0z9wrKqVSAWIL2zVH6nptCSjcl6HxcFNRXlBHftnKp9HDLHaWLPDZpvnt58vD8oae3ZYHZivGqtlZ71p2Rdjh3mHdJa1uJ69KGOQFXO5j/GBmsEhd5r20wtNhOor+Po1H5AYrxE6xSMp+qNw0Qac146tn8sX+z3b3Suv0YWbWZfP0R5apGqfVTV4sSN+uPPjNYa24l+c9JxwMM5Ea/amzRXr7Q1Mpv7dHpaxqnp+uXzjgQJheSNYAl6/HLVyuKa/soT204qD8bptnuZNXDVobulKuPuhS0RtR3+MeTssndTXJXZJi5DJWENESfv/uTcNJyu/VrZd/OnV41N6S4sjU/ttrhxuqOH4tmDD+mE7/9qXRU8pHpSybKlHWVP1YO/pA4kWD5LnGOvX3PtpdmZB0yFbvQdPs2Rt0w+oFa/sHeC0yc9127sJYA8vi3YsnfK9r3N/ax/m5c/X3rzP2un4/dkW15mZGr11awgKBIHm6tN+E4pLQLqnfy0eUiMgs1LMSVjcxjszpOnZSv9M9P66Z7qT8IOfdh0U2us9/rK8ZsqJKbJW/9GX3tw91P8pvtx0uUV3bV8az69cuyZc2lZV+FZ6y/kLXintZ6telTeY/WboiQk1/kqZBrK34Snkr086O4g3+pi1fxBYGVTnPOfrSbeaFV3lie8py381QlrApK3f1yHzgG9/xTBD+qGC1j5ul2rlO0ktU0kY8FllXt06xIPfVHumDCpuF7F9/zCxpdF+gc/38Qb8v20KHJ72TWJWzP2927NIGrXV3rly7137g6ZPXli+ko8oEvpt3BlQu6J4a73Y30mSD7Lj3MjMrpKJEApXGjTqbnK6R59TnTNWrkl0idncvu3kPDhWk3hcuu3a15Nkyv83jup9wFB8/3W7/8aD+uo8Kl8YfyMkRj6/QFTE5dDb3pElXhevuAq/jRketrl1e0We2Z7mU+6y7VxzWvvOdvsPn+rCqNDdZyfybJZEfQg+6eGR8vn4mXU9nxMqY3LqFaR7OaZOdDIsqKqLVY2Zmu2gf0Ou29l3AmC1iCz9fqH52ZpyVo2KYlqPXovuCSs+kbUOKDxhI2VQ7DUgonLK/s+1Wg9dV52f2UL16cUfMIKOdhvXaopVq+hEyu3rJKRpWyIt674po6shtHWjkYrOzj/Im97CMYTdu9KkpM9t+xbLHdJUXB4ZOaUoYeN9Z+5336099Ld41H6mdNFpznuuiFeVu7Q9a+vfTi8w3OuS5fkNeeO+BSROm6blpu2TfaXtQMqjGM/pqZvLywe+qwv3PaClk9e0m+iXLMrD+zRgnezlxgUAwW/z2laL2RxGRaQL3RnUT+cL1xat2Sixp+Xp3yjNJxQ/vgx207xvebFa3T8qaOlwnymz42cMBKrV99kwo8G+8KSN+cmu7u+pL+cJihU4t+vPb937f4vJhU/8S/wa9g3ULTQ4VLL01aIWotK9mRssF5R+zR35dqtzV2uqk0Dr/2MATDR7JDu9HeDfbNZkmq3srb/jp92a93bUTjxY3mDakSV4rLypIyXvS2e/g4Qlvtuz0mfT+9feW97O6HOz/IHN5f4Vt3QMS3/oteakX7iilvHCrm7DNw9jajUMGqH94e+D4thVa0y8dEdLc2bpZq9Z0+8OQ0kCpIc4LNO+ufCyRE9/UPaVm9QPB4CGHBzwxdg2XbBfsnmxob1E2+HpKjF+f7p59HK8UK/db4tlt/zq9isW9Hqw0N5C5oDdJkPkjcLTOl7jVs0OKT+fFfksOe5nVo+pSZkL41DPPxUMVbd5bdjV+WXm8+6n3x46MtJNRcXP1WmSxo8/GadoVEiFm5btydl078t0x8dDxD9G73uQNfhSbN1z+7Zmrzb6PdD066w81HRC/OGLUMxGHuAXpDf3D12R/25m4on1Mk0mNSEhI42HTR0P+h/4MDwAA8N/Gp8Qj8cPYITZTip5K9VreZvb793+xX8d///7vLiQQ5K5/PK69+5sMn522BgZrksaa7TdZezvmzMCsxMgM5bB+7n12zk85EhbfVTR8sYrfh7maU4966/0c9mbHbI9jk6NiZ7TWm71fKF2+9cnNm5WdRKrvrEpvcWx0HZ3QLa0+/KF6+uMDn1YcOB0w+czjqiHqQqtkuomt7Rs3+Xay/CFzz7gf0ad82h80/tTd9eriG8thw1Nr/b6sHOU6Rv1YvciqoKBgSbMYo+3Jd8J0JoxUsa29r+KaL6tpNf+xgnpVzradlS8VJ5Teufa0buwHm7AT3VOulii4S7yY8i50QNSQ2BsOe+YGvTRYu13CStY6YtW0Q2ZuUYIH2aYyq0qHGzUfGZVQ3mAzf4frDSE7UZPJ8cdOzxojNqjH6uySfp6eM/c3D//ZlJsgc3PMqG8ZcwqP9jRJb1P6mXdrQVVUtffhtjkDFTv1ufUgpvM3qcSFNsld91xc16/BeKBf8LGplQpjzPO7N6Znbl+9ceiKnOSxl6Xj0lQnl295bbH7UenanufbH4p4BgTp5yfWPlVsveU7ZuGIXrcf6n2oi2mfZyZufn3O3OHNZZ7O0jfaJiieyXbPPvuxb8hDl+9vv2U/O99JziSov8j61m7CuXsDV+4SHCkwHGVxyHXUvHaJMb2z5m4RMfHcoPVt/UfbG0tD1rx1PtHyOGr8qgvbl7b1MqzbGCUqPkn+sl9cytYfNiZSuSO6N17XLm72HXhinXfcjdrVxXniGY+Pb5/XU/a+zrOQq81jBPsGNBbFefiuCMzcJN4Q4JWrftVk0KBDUSWqsttEniqbFy9UM4hOzzAtEnU23rljuoS8/euRwjFjixSqLAMP18Zm/LB4Y9JPMOHn6KqLpqtSumy0jIgorg1sWDjK7/0ii8z0s9+6SaXpHbHQK751XkR36mDL5Xsdpgw23VqiFe7xVeZCTeBlj8Shh+YYa2V01XpltNb61onnHuWJp/VKCvQMogweDNdR+mp1tMHqiKRr6Qe1mrdDZ4Vv+l5df2hAwd51+vtOlkT8GHUzJLqr3/htU81LJ59YV9nU++sdjYdvHDfc+mib3VyUWlOa/7znjycjteJmxihvs7Ea8d21qL1v9mrvSrmj3VTWHYg+/sbtvtj2ufKr/CU1L5SH3OkrWplbujrzROCsmasS7Pt1UpCOzzLqKd+52Pf5/hcvJapLtp8q2f7AxdxFzvqx7ZW+Nxs6rxP3qvp5u9l/0fre83aPX/QsVTlfcFYv7cjUbfO88u6ndbeuWeW9LyBJK+CkmUG/1yYze9Q1mT14dXhPfZJTZWP+lYxtV072eZknsmj1uuSj0zKso0MHO6g6tDy+fGpjwIHtN4cM2XlkcKZX6SfTF8dLay917KgOkNWx/tS36NnZbu8PJMpd0/p4adrrMYkDEs0t3CoGPfr8eYnVuObvgdZWza3XFR2ao56V92gdUL/s1STrtbKpozVdP9lLPPbdHZO+qs/Fn+fm79RXvlv4utv6cAX5OUMTJjhllubUbXD1DDrwMeJL/rGt0uuSxj7reJ8wZG2nXi2mV09bHZU66CLcNq+PW518crcW9+OfNesHVB+vHbbYYoBDjVNypuoZ4VXT5JJ9P3dpqL+d6vqhsEe+dkSponiYU16ShNwNrXeXZEu3Dv4gZe4d0N1oq1jy7d6B7nY9zb6s7ivu36x/I7XcSkUl5fzNqFGpDQojIwYUadcV1do3jxp+tj4ornCxc5+Wjq3VmyzLbu6saT62SOK74aNjMl5vb41R6hh09HHDnhEfnIdkWLukvl3mfu/H1EdS72x3SBsmBdfcWTto56auVzbXvAwre6DwU3tzjUTP/rdc2iZpBG30rK5qSBg1Iaz3yDGv2g6YftaYLdTe0TFmlZ1AKMtEyLKfgbB6qPjlCzkfB1s/eRiQbKXTPb1XmKRYV93Uoa73alNvTIu36zponrqMV3uCzNKaU6MLIoqyZrkHepZ0cmg97HBe2lJvlkv7DOGf1ZE33QOGhA8csExz8cMpmtPWhIztIusUdFzI2km5SGLH9JsjteXH+b8om9jHydn79pezdb3ML7V+3jNXyqZXeecfJceEta5NiFbxfnOkKvpL1FbXphlp8v1PT/UQOrG1sZ/8nFeTskPaT3U/LlUqXbNtxuMBoS6fLSSmGkevvjJ19Vnt7j3n9qtfLdqpNbpbm8bcaaV2M9z7T7H8rtpaP798+oOuJyUlB5mfttCIWLf7XEJ07pQpSw9OHtprtHSzW+Bcl5vC3zdUHKpOPbHDs0JpWop59A+lQ5PyLSbsVLUq2aS+fveeMOs3D8f9TItc+PLZpi9y45ffu+ZjuVjj7bYLG/M/KRyPGDqvIHXaZd+086Ly+cUVA+wKDs15maHqYPFcvPBqZWy0a17aCOP9Y1SsPI2kX9/vnxt/YljNOCGz9b2WLKicu9+jaIN9xYDonmJm8/LEp1gfX91wKfiBUGXf/M2Pmpx6hDw+J/X8o/qo1KX+VfrrNsmrPv7s2jxP3Gp5gmnGKW2dxHWD91y/8G7T9hUCtwv5HjnHVtTqj5U1mXPApo+ckOojFTMrgb9b8ZsJqofuj7dVvZrV/fq4oNV9jy/WP/xuY2TPqU7vAm2kliiErNNY0HPEpKzME0UzFecZ7g/4+rDkscy55a3N1m+fquWN2B5xdHt+W2e/obMK6vXTtK7J/wi2PWP8WXnDLdNh1ctk1SXPrl2neudWypgtxcGD2zcbirUPFD1+afuWHIUlt9Ze8ah+Knr30Iank+fuju6+e0eM5o8RLfr72wd/NfrY2f7AglKxHvNm92z6IjlnR3Cr88UGjeVn+moUi8S5bC7besf4+KiRcRqKxsOS9ZbMGKO9+bv7p8j0hy+MZqt8/iAz2nVObvg1lfOVyo4xQ06tHPF8bkxBqW7IQbt4uR8fLqpEL16j+OStQXrVrY/7Lw2Link5/MzdiurnKbe2iclrxnk3V00wXXe+KmxOZe1KnecaqXJbHOMzqjemqp6TvFC4yEgr5tVw9zR31QYHa8u7y9sfvLoY1v5qX1+fK1M1lDM6lxR9Cp+zf6aPhHV6k4tvy+YxY5siNxhKuio1yK6L3aBxacnWtQq3k4ekTwlfpGO46O7eH6ZtsTE9ox2XDu/Zw6vY5871E9suCvRmP3swMmnDeBXXsFuJdgMOjjGYdrp4Vnj8Z5sGiX1Rnoppp64tmqgTX1P/TN5Te31SfrO3k7pP1Km86TUvcsway2XuNuu6WO3V6zZr1PI9hbJ9S19JuY+3XjDxo6jwuMj5KSvzzjhtE0p0u/eih5nZyLrd52MS5utE1eXn+nda00X6/Km5HdYf5Lor1y3vZ5Eza+jKpRMcdJ3OxwzN3ffyxGHZTcFKg5wVnj6X+37XIzZq+XT5xPBVjue+Oc09+faq46JjCffrfzwzN0hxqciO2/PNOdN+h0/DkzeJZqU7L7TfHnG+y5qRu5+ISRseGKR9MH/IpE4Z8klZ+T9f7k6UeV21dcfoTeZXPTQjW0wrBnR/fHnsk5V5G5w0NkcGnoi/87LOvfb2gpD92cEOo62XCe1cJK/0KFNi+eXaqFkdDhcV7nuIt+RbVLemFE+M/bKqUr+0U5cbipMrppTtUFl8dde23HinqsbHuZUHrn2O3KuUsvP9IrMYlx7tTXM3ReSVS32MW6035JtTwjLfQNllPW4cPHSq51lx//T2q5ljZ11TnF95dNGd84KixOtTMg+ndqg93Lvm6LDrfdu7rkiOHjs4ZeXZsqndnyl30dyfGZrR/jTgoOSR2Xkf7l71T1J8an9eQdh3e06N34J5DifXmt8xvFO4Z8hXo1OnOxvNtU/Skjy9v6BSxLla9G2hqvRlnwkd6pnqAyreJz3friuvnvXUx3zXzuTKlQ/q3le8N7hodGu+bddpEwN3xYq/GK706Wfn3q61huH13bXuTx0a4Wdmef1C1JqL64rNPwdVxM4M3jXiQqHggkF0H/PlMrbnnuwavX/Gvuf2qQO+xIuJrN7wM7Rf/0kL7/64PHC9rNm5itbQ0Vq6Jxcuih/eMPe9y7HF00W7Fp9fKj7SeXOWyUYfuzlf5xtc7e1iNKglfNrWfJnUl6tm/g9/7QcAwcSUzOfLLj8dtv25tO3oU2Ilv/f/4r+O/23/ryYQCGIEAsHtHRtHzj4aZf3x/bfPYxV26qsdVHjZ3yDXqJtHbPr4tt1DH+/WbmleKLw33K33Joe3Yd+2TBrZZ1MnReui+sFjqy70vNUWEd7fLyu+j5qof2GduGLZ4oAJK0zDE3yyHQcdVR1pZTLk66U7NZ1P5swz/Wyt4er8ylR4kme+3ivL3XcStbT9NC6JVYwZvbR1hP1T4XfecbHdJgYkjOq70Vq27Hqk7NrdR31vvxhk8ejIyCmiohPsl+1VsHH/buYSfe3NmkdfR9d8j7OWTQ1Z8XyYwYD6V+LJIw3M2mffWpm55sbJYrUTK4vv3F0ycP7ZLy1jpqlHtd3N0R113fnKNSt9vcOrRHXe7UnrN36G/VTNg19G63+I8Nk7c17FjVS74N2aDXN2Xhg4JuzAW6PFmlunzvq2o+BAfFCYWc/LttutK4WFO++ZMGr5Kb3mvRFh+vaxjwtObH54wvZn2YWtAecHHIub10OtacL16Vn2tU0n05S+6mjpPzvbvvPM1dlPBRU7Tt7xV4jZNGXhtARVhyGVDTah58a8vFeoViqlVx432Kf3a7EByY+LumlfH+ycJbhXo14VqW9785LKfJWO+Zv3XFstb6W4euLwgzIeXyQ2LR+970nvNedmexXO2pudvcXiROLZqKAXhcaJzlMmBSQO6a87POd+Tcc8LfGXflPmH2xSMv7Sp+eNCiHZXq61Hy3vB8p8H7Hv+pmkx02Kb4qbm58HfhmhY/x5SMiW5uz5thvX3Lhre0Ap7/R6+aUrXs63Dl1w2PvWq4jsypb2Y+ul5WNFshrOrw/erK3ifkxMbPkkJ3/ZkG3elXts5y5Kq3WT6J8iqz/w9uHWtLJKtTvyKwau1XRufDQj9atJx3eLqTb69dvPpG9aXV38ccWobqL9ts67l3d/eP112+fPe5702x86J1jmQr/MUoF1wOq7+RNzGtp3N+6oOO1mvkynZZfd+OhQm+aR18xVpvQv2Ci5ufvc24HXC/asVvZoPZ5r8eydbPLS8PHZwRMzRq/f2NDF6djuIV/sBWYDXy0ceq5VX94622vgrEOnLhr1Hn60ZavSjy8aG3aFzO0cLOewVbjntKa1kyc6z/abl5niXOuXpC5p0KXoTUvs1wLrF9MmrjBzPrvrtvLbuK4zLicOeWCS0mvhdaVO47pnvGmVK+gr+eRIWu3z1f2H6JeH5o2pen1+aJen2x88nqoypMNQ/9W3WPujIZMWlVdV95xRfGLXnNFlNukiPWe5FWYNzvEpmjHH28Kz93Q7ab+MN7rJV4KKKn+ul3et3+N4zKqpR8iY0BO3Uu4IOQ1KN75Xdux7xyGJXVkGz5Y9Gpn+xEpvZeWiBI9SXX/DepO8zyvM1olIGaToqj153D3n59fQJ9FCMaNfywR1PGzoq9DwYnBZ83irJd8UJbN6r5GMrtaNmNl73SEJiSmGipdsc+vvfvP6Jv+sU2Z5xuzyLpV7u/3YH9+5j7G0ezevw2ov5vR4amwhX16pEhbt+3qEivneXvIS3lkz03NWHnZuK10fNWX7nd5B/TQMNu+6u3RWum3ZiFEzfLPt5hwVfrRE2dpl/vy3E3vs7LTv7uqwdncjr7LhV7qZ+RdtjrcMSq++ZPx4alHd54vjldQzIhZ2swiwO3e1f94L4W0KsbXDdgzZ8cXhyiGB449hbxN67ZZ5sG2I50+jWR4lJnfePni23veS1dr5u0p97nQ/9dhWxub5jgsF5l0fOHoVhH6KeH1U+4bq/b35W5/7DUnW37zduOqktZvyTmHv09NL4r5M8ze59cQ63vZ2+P1BebWjZe83BnwqVGhouHz0f/hxDQAAAPynKG7+1n7yY7PSvskzNKS3FW/7vf+X+HX8H/f/hjpd2jp1uaitfmjvgleNJj9Uvnwbql5WMP6z2qhZ9Tbjw3wUe46w+2hVm9+v7P2dKynLLc3tXY7kpwsM9BQjSvtXGBimqHT0sUqdnj90cWBPMyW1Ac5lD4K6nvEYcCJB/oSjhdhbrxH+aZ3HzXyctD/hxRjNUQnpLkNXT6/Tuij8azDx06pT/F+4PdlzfODyW5f2hI61vKUy3Wf50qVV3/LnjDoeqCIfVNXSd7v35A9dqu6cXLLjSK6ah9+R+nGJnU5YTztQ9VjwPGqp9OArr4K39xzYHr2ti/e7e6FZPQ1nxoutVJpyID1BVPnuw27exa1atev2S52U6vJdP85L7H3FXcOVxlI5teMq2q/2jSy7f3n6/TO5pScWD5pm5q6/eoVxVpDwohNeS46tbZB8LygwmzNwXLeK+30W3Erd8LNq/ozaEdMFu4JvSI35nhDtKW/pe9Vx/fnD8nI7mq5pqE1Zv/fF5LaQpVMF+RpzpffYdjLedyT47qH+5zSDhOVO/Nx2I6rNydkxd1XQmKl7R9x3Opk3VXOX6/LRw88/nC6+93LVpWVPtaRLd3oXfZu4JL6v/KY5Y4bl+de+aqpsW7hvVngf4Qif45cXXt26Rsg2zXamVWnfERFZl8Y5tFTYzzITnP+Qu3Xg3o0WOtH+yudyLUcfrsvfHaQdlGgTrLhtimT+2cdn1mxMe65Z8mDuDuWW2l1rnnxrNOxx5cJX1W9fTygu6jlxSr62zrkotfJ+5+YdH+atdGrPKMEyvUITK0N5a8dbMimnr2l+vZO77lKcIKufUXuMxtbIIzWWA7Ls7TwmDc00Dm0ozQpx2v5jVXKndQk3WjOXmd6tF3O90O/VBlvNKWO3jPZZccp+poGpdlzB6nHfNwzoWKLS5WZmcX+x3dKpfhKr218Vjb24Wm2U+nsn7a81R6JGiP5/7N15WI7v3vf9RlJoRIRKKCWVogxliDJV0myuUEiUpKSkosnQgKISksgsSRENSFGmykyUJgmJytSzrWux7nX97vV71n2ve7ue9TzX835t27nt7ft+9jn2YziP4/xu/VGQbXV1yhyP5SMGNFoZvj6pt1RJT2rD/gmW1WLeLtP71es9mbY3/eXKHrmSkx9pl9mMPd5teW56SGAPkTKNHhs1M55439zzYeEc64Nb5Gd8Kdxp1bfYbbPh5ohXshHx1kanMyL8Fpj7XZopVqVQ4603QMBX9Jjpq1WHSxQnzsscdnb7QJVryv7D9b9urd3aLa2wT7NNyNcXhVEl+rfLDrhYt+is3C5xpDD76tsP9wSdhUfZN5cI7tyjO8Q4Pu+89FqrbFNnyf2G/onCpXfSJ7YGrdzVJUfRsOOMxuhGW5O5G3p+n9BnmdJacf+7Dh8CFlp+ub1svewboZBNn4zLni/tfL/+Vt2eAQrGQ0LV5Ia2ni2qjTu+9JTyD2tTxTf659vfxpgunTqubliSzqjCBWp+/vk3nJ1its2JXPogKvt+5ncXw4Y1he/d+5zXUt0VfiHuy+j8ABXLoy4KGkZB9oFmyw0fve/jmRsyrFeuRsDhtZN7JiT0v3g229L4Z3Gh8OcLji77DPxkTWbu775M+t2u0e/vXYveff2u/SsFXTv/C0Exi7KXpaRPeLtfxVHi/NKQ2IsDHiypHbQzrCY3xVg3xDbzWZzfTeEbs+229i4bf36fv0H8hBFvLhxZfXFVmH750hDP7ILEBV42jTVqKnebHdL6y4ckijxs0d5xbfKWmC+RZ8flCrgFD84xTrrYWn03YFtt/Tat7NEje61tG1vf+0mY6+PZw96su9ncz/982TZZIZfE1536n9t29BrwROdk1py4EYpjK7YOMPPUG/tA3VBacpFco4XFKs8r+q81p+rq2D6Wu+EorWS3+WJJ6w/ly0Gxva5/W9NPdd6h723xA15OGn1Iaun8zDzHA7P/jbdqAAAA4P9YV6eHPSN/lE34tsDXLFe554Tf9b/Y7/lf9f/Nv5TfU+S/xztHS9plLwzNmz3RqP/EnZvshjZuPntv972as8c/OZZ5+XeojRrl6vFe74eyzIx2C42ZC7ZLJjkkjl+8pJd8Y/nGpIjvwZMWmLuW+Ycf0PPYEHMs52s3s9Ox1fWm30dePLtp/Y7RQlfcf2rqTuv9Y7v9To2PVoFXEwZtN1wxRcf5Q0X3XXl9Rqf8dO11UWliWefi/DLF7klhNeK/FnprTkxAopzo2SVK0w4ZTO1eaxYQmZbfXaQk6eyoSL88DeHtnm+CBZvUnkQ3PGvfs+CUfmIXdT27a8vj3Ev2X1/SfMhV31VxSefc1LDZ664F5Xcf3zRJfFvMRbs7lwsvngtR6NH9SoZlgP6qxUurWrr5j2lzDre7ILMlNHjFplonMaX73exHOKYmvv/64+mkw1b1/QI0r5bsL24eNE1F9txPpy6DlrjF1cffeJhdf3z6+Ph5ddqpe1OmO+U0hbjpbJ/9eNGEGVl+VZlXTrYtOm3sXh199LbKCAtVbztHK8HNQWLN+peldJrOHrwqunrwsK4P14WX6w3SFq+yNprVfEU4fVbA5KTTJU/6Lzvxo3p+TYO8lVRitkZXmY1Hjq0amxwkLRfjttp50q5v8qMn+XVYrZvn2HpOYdKuUR80Jlb4yo1+op171mSo9RSNXmJiXl1cpycu3frzmsPoul4pIw9o/6is1b52LnNstVy8aWbi7bIF88uXj5s7PaigXHtzV6ucOyneo5e+XDV1a/036wIjkWWxairzpl2MOPRaclTx+B4CbkGfRE7FnfS9Mk90s+/e8Yb+6U0pLYnzIt9sWbRJtSFRQUzztWLaicYJ7R0lmy2r1l6MVX9gOsamqqnkx+Bbz7+8FDGOzjqttdnUUUVwhfLH8kLL7a+WHIoQahnaPOeAsb+X5fRKiZSCp57KGxd3DiwUf3P83YAhBy4WJ8w9FuRw5Lzjksyug857tx+UD1xSlmQ7MFhc5a78CvWbq81uzrGa1Ch5qNajX05cYpNl1/wdSx3GK42fUzOse+YR0Udzlun1UpDMqeudPtIkNrxy6Na2Q7uOnP/yoKBZViRL5eRWhYSsn+PCn+a3vji2I0lmxTDxjLp+QRMGHRno9PHSLANzx4CMd+/f5N/o+1R7pcWk12W1hw4GiF/pfuxqo37lAoM43aU1OjcOvxJOixeNDtylFd0WOs3V06PHFc05Wd8mKal0FOwb/kyz+x2XhGl3xE9NLWh/oJs7Z4fjJL1Ka4OQT0ND38ReNuqYcmTMuonyQVJm13wvjvk47/UcH4mZ2zb1E5ipVO9kU7k16KZSh9Hxwil7Hxl4nDRd52iWGbzG9KJ+Y5/evl6DFxfoW4xv27txcLHfnAvqpuvEZQU/78gZKm0oNW3HfM/kbpJh/vHVp+719mnzFBi/JEBWzWx68ra6W4rJKfXPTBTEfapURogsnHhiysahc48uO68utXKFXN/7Ug6ViZaPna9dLNAJez9jWcPH/ekjs5LLe2tVdrknFb1W4vWTExp9XwcHOn1fsnWZx4/RUw6n1XbzOXbLWtr+wgdX6/DW1brFI1aPaP5+svzs/RyrYQvfq+8vdr6hWLxQ7db4s2dLfT2Obz/z3eP52CmBB+2ea+p39dbPya5aee9snopnrYxbzSWztjkLS9+WCtUsnuKQ/v3i40XehR2X161XHlgR3Fr05FzKoSG7pn8Z6SqiFy7W2/KOd+Fkm+Udwy4I5J33eZqet3t+eMPGtK5pHRN6ZS6aqDpxjKvUgL5fd6cua9S6P3mvZN/v93IkPizRHeccZb9lWZr9keHPtldXfR2UJDk+smdkZIrJh5GX9J76qAVN13e2K9W5HGTz2dP4rNuUIarO/Q6PrRkrKCnmqLyndOOGY+ZjEp4efahqWichnlUYtq3k2PeUde/XrOopENNunCPWYXPT7PKdisK6fiuKzH7+tCuesvrwszqr/a9rxvWVjI3M6z+rbcNu+53GYfr3LqV7LvRce6HJz0Mk5fXr+YFhEyr6H/baNrRb5pZ3XSrv6qW0z3+QKKrbvs9QwcwmuLHuzpRtA1XVZqxadtt1wICxnt5leg83dLvVS7zb9sSepV6X5tos7nthmr/M0ILz3eO/Xqg08PJ7YfturPL1fl16yR54HZfwpvZ6ju+73d0/rZR0/GCUaSmjVWhRb5UaZn8+56HvxknhD08G295wPOouNeVbsPXVPaMOvj1WEnJiVd6rafemTEoNkO/0mayivVh4nbGyz4zZp9MzLe2CLjVsv+upmf3o3/jIAwAA+P+1jpBkp7JDcg1n00VlNlQKXvpd/3f7Nf+7/j8uICCw8HP1lC9VpxbVLNUbnerSvcTylkFJllnauL6tUp+fzMzuHfWmeE/40PT3MrM0Q5rOG8vVhbrWPeo8Pvyif2yWSFrucZO0x9+DPqj0cqqetfvZ9fUjkrUlRlxeOnf0+IAyv+Iv1f17ReRa3Kpc2CXpUee8q8GBZesmTw7OsUyw9n9geHl2xTf9mR6WqrIbno+P7YitihE+/+im9CfjQWmvdaNaLj3Z0yf46vBx35wv7tytlHXP6NhzuciHx87b6ua+f/nKVmV57jFxvXmaijcKVz/qflw6uqmPl1DbbqHbBf1lpoY27SlXHSzj07FK0Hz8tMKw/NEt2/q3vO/5c4GT54CeC4/V52XIrOsuOSQyU/Sa530h8QrdwsALNZbaO6zC51m3DzvTXBdU8vJbwtTpSo3HooUz56yV98lqHdk+dJXcN+fj9x4MfDrjZ2OpqfnXhaJRbrmVy653+Vjt8PPzcJ3UOS8EV6t6hERvXSHbJaJMLKN1ybp1a2rcV8emlO0bn+iaGpdquUS0dkQP+5xEtSGtVVt2Ni5OPfk9Z/uZHUWhcXctauM2er3NO1pjbdTlRfDBonqf1Ln20enLt7qUPLDV8TvkYm1Xa3vxtkV5fh99rxXN4Y2jnLYukhnhUPfe4Zq726nFrTN8y68PKf24NeXZ2swz6fujjwosNY2d95dzvsV2+Ynt05x2nrDcbWh19ssWnb1Bt+K/nDuZaiwlqef9tjNxsbjkVZHRVeqimzSM545+P7O5t6FYH0njb76NK9Re261VejXvtOSA++GKMy0fzjiXc/Wz3IVLwmO67DirJhsj9SOiV260vMDzzgk97ts9nfU5Vvasqvl3YVkfkSkzI4ybK2dHel/MDDoefdOgTkVZrmye+5rYaonVymGl/c5OOyqwfmVgh0ZxXqd8VJeOuJlKeUmKe8vfBvX1GCijWqnX63mRiNPs137OUntqGzwKMg9fe9x35tl1run284x1ErcpHXhWbqzQ71SqZc9or9Lxgz5NuPU1cdTEpD2vj6/5aS3lva5AxnNhjWPqG4GpH+fZjekW76y+I7DJSHb+zL7vXU0snqVkFZ9oWbZHfZS43embKX7+kxqfFgvv3f+ssPxQQfiiXV2Hq5Z63SsrULujttl+pZRs50ubDwEi4brd+zyYWjNn4BNR4ZK+mkIyc4benzF1uUVxTd0Fn2e5wlmtDed+OgwyKDw30cZi5t1aIz+JlC8PQrQXWaw5+uB5V4EvB45ZLH+b8DXuxpx7fhuFTqx+N61zX3mRydN4KdfmsTPFva85qiwMsRnp7Ruydo2KU4vopRid2qOHTPvmmrol2ptdtN3ladbjldnDO09WK84p3npCOmTeO4O3Hr3fqgZ+dZD48uC7iqBOgciJs7OXSIzKe351r2r7hS1bDULM1V8rOegFqrcEKETtkfeKPZfccHxZssbW6a+jW/1GGA1wtLsx1eJ+/wN1j2Iu39zxduh2u+aeU45c9Aq6N2Vsa4+DaZEBUz4MjawX6nLr4JxdlgHfW8RO6z8Z/sXcJ26RstGd5UEeuhVX1SUWBm79nBxv3rjCI37KfAGfq0NcxvY/Nt1g+qsf1dWdDb3GDzOS1BA7NXOtzpKatY02Mns3eh0d0lU998zGWSHRW4r7XZjUKdhdxfhe29Y9517fUF6xYPGpygZ5m6Z9vc6tKc56GhoxSPSDVlP3HhvGt6SMGK8xN9LvaHFw6NMNGokN9bH99XPeht6xUW6PCH1l7XsnJWSztU5wRvRTswKlmuO+RkMndt4w3jJOy8Td3PGoiVVWq9aGBsVnOhLZ+TLxZ0f1tVHsuFJ5S1vb+FGrdmVDzBvbA8s/2ZSJzV93ue/laXMufZ2wvndts3PxfKndGj3UPtvfFr7XaZhtvDmhv/PU+UZjz7zofzd45A3N/bvFZp9wzO5368Wlqc/WRViIjhvx730aAAAA4L+7wOf28bf2NszYqj48Otl0ROnv+v/3n9X/vv5XLFtqGl5dsWRplfSeziYT9zy9fYLBI0PenVIfN7/q/o9Xi/xF914e3qpd87i674naBE3trzPOdssI+xx2KGSH1utku1OW5veKTO3iu8SbBF/ccyzIYHCg36yuLV3KPfwq0uImbR1ofSen/Vxg6ONcyxnaRW+atOQ/5cgZnzpRerzFxKq6YdSPosq9rjcjv9w5HzinZlzgw8iNVZoxPab1yjD8IfHUcliw5rFZ5lOvjZ54MKF45JgWyYiL/WZucfexnjtXoVhLOCvnvHL3oyunSRTOvrJhbOjdwOv+A1+4W1XcTF4pfnm9xfn0gndTu2UNlXrTUJG06JVJf5W1rYfHls2Y8Cni1IWSn4PjA8YusjKIqpgl9j1MJ3WHQdJ0tS6my1o/y+bkmy0NcbnrFNbi6SOkKntov2jL+x9bbBpNNFQqHpos75/zzmHe5fupM2cM8Lx9suj9Je37D9rUR25VT+jyZXV6ja+OS+Qp7e/mAstmRL1KzCjYu2Pg2h+N3Q8VtcdufnHnc0rhJHPBtT9m77jq1Xmh9EZOUMKW3RMsU6SHbDWwSk4Oy6g07/PJwzTglt+E5F6Ss3c2ZgaVrgvJSw8Y4uJi8mOshZ5b5cvFrs13Ul789B2/erfQnAdtl2rOmlsvTksw0fn4uF8/t4IXX+RWLJx2Xr1dxm1qpkZKo6dzTk/9Zy/MbujFLC7y6SvfoiI54qlTt63FzYcbrD7e1WrxfWqp5ft89+6dQ2tqlap3uq5rOLZ7uV2TckrMnYmjgwePCbItmSr39tGFCZISqYfVfj7oqnGsetlC35UJpXfTjs+Mcm3d5ORQuXRp1lpNdeu9xx5WRmxXy2rP7S2TFHk0fZFrs0lcsXRXd/lpuTt++HdJVWqZpWN++nvulZFNWR3zW0xEdlpEGJz087n7crfjS7cpKZuPtyXW+h5Zc2pswr0JSjNf5w+pD5h7TNj7sPubEdbV7VuMSr36vP7WOUNQLlL2vXqPrDcl2cqHW9NX308Od17ndMvQbq7a21i1WOfVR6b9MFmzOdZ81h0z9xPlDRu3jRPanHrr28ZVdb7ZMaa3tF+falMofvZpSs623Tt/+MUG6e8W7R7+NOVwxMrFe/NSi4ISNrUVl02xGCxeftZ7knrtck2J5SM/LuomZzvg1N6OZRWHB6arHXAT0bYRsejvlN/0/VmI342zNacyh8tpzo3b0SM50/yOW3zRB691wsPm+06382x/uFLZb31uYpymzNiiz6tqEvNuv81ND5Ydtef5EJ/Nh8fJ7jq1IORhzds18/vNk8hWfZb644FVhUmxq8uAorGr9pu7GAY+FxOb2/OQ31C1hflztXLHj7zh4pOtvDI0Nli86by2r8Op4qVnnrrnKk3WTiw2HtH56EeZpI1FpNkkn/Q6BcdyixeLWoM22ES7VObnbNF+PTf2h9h0jRFLDA2/hLvM3j3u3f5Z6vqF/odshjoGb38xdq594Tu/JeVfokydRmyfnTBU58TY2D59GwM3CX0333RspoOK66ohldl+nh8i3IQeq9Us88jsnnfdTuBb35o217MC5oH3sh2WrAzIilX6GJdRIhbqd0KwcdK7NEXpty9WHZBP8ol2vX6r7USno8s9G6k+825HTQzddX50Q9JBmTmNQUGHPi4u+fQ1QFo1L/JHzMEWtYWCG4+v7mOu8Nr+qmXgJJsVSnfisq4ar9UbaaleGDr/drv70wdvvPZYZgjofLnvfGeX7+zyOQ5zVZMdljQs15WK3bG62VnzY5lw9nL1gfZ+s6PSb62dsjXiUO1zoWNdk9KuTXFoK9ly/UPRCNVNl6o6KuzVT4/eJlHjlDBxeg+vkBc9Dn2YqXAwfmle1ODpxyemdBeMf7x15LgpL9Ye0TOXjz501ijLxdP/c6h72OdLlbE1fVRGTVi2Iz66fHuOuffmTVHOU/xH6t0tsfw3Pw4AAADw31z3+ilzvSf8NN7Qq+X5uiHJs37X/7//genv+l9SUEDgwqZl95bWRr89npW0NKpRpci13vGT92GFfNe3YibPuj67vXtlYJjapjiXD4P2NsQqFc3vGRa4N0z3qcWOo4V70iceGLNp1MhXCiFbd9Xs0C3XsLNIi+66pbThaO+SGyL7K7r6WQxXNOtUSVU98vNY1N7H++rkF9yOORdQPndZpaiDS+kaxYz0hEkj2tLvrmpSklTWXrnv+Yx45SHm5fltqbOEqru795GQ33Jm85P2zr/KPdE9N1/Y1muqwsDkr6eDYzvHGPyYfUf0zc7B11oHrRp1WXLb9mFiZxcUH7hdePJh88GxPk0Vn6ZOrJqlOPeF1/yxz1zcP8+zWCz1/oPcnmtu/e7vlSp9u9JC4d2g7Dd3CwpD7Y6ccfc4PHSYT6dShbhhR/DALtGy4zQWJ+V/eDF8UHcnh4x5K7yfnCjdrKu8ZXfLwV1RBwduGrAnwjXyQNdlc5W2iZWnnexWPvO8raWN5MqDBcLChtqnqwt/7pjfaCWdsK8tPK/n+JqS3m/iA++r7HTp181b4Mmg3f38N30clzHLf9EpWcGCh8pKb8zEjn9VfXK4SbvW9IDfdQGLprf35I4e6p8Zp+O1P0ZLeuSxZs+AKtuoj0Zb1sh2k2qcNWuh6ICDsmuztwRZvvIZktbzTGS3iScOpUvZLBafdLxMxnBMpnz164T84B1Jj/r6zDg1da5lZl2DaGZi28x+Lz179vs4IKSpSFGkd/lVy4+D4+vETvcZPWB7csbKnUmxkk/KUq47lISNLxVwi1VaePxgqM6HgSIea5e1V+40nqE+QDFN/sPyluPitXnPr40aF/U6+Z5xkOv4goaoj4d2Sy0flNRcNlj2+pjh02fPnXJJeoW65LRL2Scj7WcJFCzvkmFdbb3Yxz4v1+C83OmE4JEL1obYNkbolWT3ToicO7Zo/X1n1bWve8io1AQP9DDYV2k98J6l9RmfDKXy2zdujF4w8M5MA70Eo4u1xaJduz14sdwk/YBecPSJGXp7RTy7FQQa7BOas9PqyE65n05hdkIqPeaWXQ/YMGCj2rJx31/GlJ1eXnHZTMKsm80wl+iR9407Nc0t7u7/uNr3rf175c+GKWe3pgsMeST28nTEDo/RvZXerTzeLnb3YFnJbLUn91e+cqwNylDRG2tbI1Avt+RED5/k/WZ9Qw4tat8ZsrpluFfNAu3xZln5QzSuuYj8+pTVSfUeqzw9POmUWenXLQ82ROnVi/Re9eH60P47faocph15ucyv9LiiW6T7o+rO+V+zl3e/ldcry0Th0cpO3RUTN7Tct0jRVUqPL4y4FPfRWX6VfeInAc8FCrPiKswmrGqPq0gVShpuaqs3x7ZrXWzU1/BX0hFHJxmF9hQNd3X+cW2AeequRaIhp3XGvstZtH9RW7x/hEyUxv3M2VLjFljUSO2Zv0baLczKtn7b6JgpWSIvuvQTzw4c+K7OzHLcpW83Ptze0hYXcutCtVTywuNV14IsdmfcqFSyfqoVGB0z5Iis008FgYjn+bG9d2V9ez5D9+aKqKu+0Z8vbhkd3Fh+ImtR0qjagoaoZtk8zTtxYxSEfRtktjpsvjZHfoXAK72XNnXlRSKbLij0XvtkbZ997zTffPW+m2xqbCL6bOUevS1lz8KXmydpuKXeeDpk8xHD791dr4vpum+ofNHNOzXYOzWvXOu8fVyKeppLFwPvpJOhTk1SD0PX+K5Nd+7TfOGVTvB25ZINs9vu7LywUztuwzO5WPtHVzKlbfe92WOxrOntl9fTrQUi+2+5eSYj6si4hZnO/n1fT5Lzaj5wtv5tq+X8QY5W4QMu1TlFf6rf8TZg/vFzh6fvSmsQ77tQyKzfy7qWwzptw4Qnnlk33KQ60s4wcJuQ4r5RbUmBnqUVZrtaP45cs1teYo7Wmudr3jyV2tRbevybm6cXbpNS/lwWnfZgd1rnoDUxIz+2JDlumL3Ubb9+9vSMKwreQfN0/ffkv6x/GLjryoM+XhvnJyc3zjm02Kb25QipUVuGJLsnv9g2YUpF42Mb/9UrOhYNF5FWUurzTXPMgWvbnst7/lgW6HvtyhtDV5OKM6/jah2V5cbNXCh0+NDT79dDbVbZqG5olUtU1K57krhUSbx3qem81tvTptW2DqiK11BaX3BSuCjc7Yz+UpPZ56VenLrjOuaCfo9uE8YuCVyxZOW8s7ZqD0Kd02MbLohdPnLdxN+pfHKKa8vr1xoeQt2UeiSvry/0EnlfN6FTS6xOOkTvyfPIdR+VzysN29O5PDNg6B6FOqN5M+KeN8YckhtY/lUl1HpFytFTVoe2a8XNsniYfiNu8IG6mGmPa8IXlJ2NvlPV0C9LeuZlvYD7aT4z6izvD+roKvB98KsiHY8tm74fOLjn3dZ3ewOyJau66qkeKbqXrtx6xvJL58XR5z0n1893vXoupveXogk93i1NKi52+GB7bpeLlEXU213B7usXHPxxUygj88y3b9a93qx5cErTomWRTfiA410Setmqr/Can+GY8HJ2aheX6sBL6YkaS4Pc7miMM7Vt71zeor80afBTKZ/NL3/IdfaoOLAt+m34+Qvjs/Ze9ZT3EL533WfbuFMh5e/vijbv3uYnb2F4XdX3x/KWb6mXexh4+V6NaJ3dTXa70dfel0O0nwYqnMxa+GqKqOfd3ppNqhaz5I/kyFbWLHM4vm10df9Nm+4puo9Tywh8p7fqUlqE+0FD429ZKqeL1jvt+CiTcfDF0LSBPyuF6kZNHa7jfUEzZrDvKiWF6oa+7kkyI5dct9IsLB6zyPSgpMT99pDs1R/yj6vMtPPSb3IoyjFymSW+f//cgOzN66OiN3rm2S3pumPSUV/FvvU9vV5/OhQXceqMbm69+8vDYkdr74dlp5gPl7Qbkhe/Ynix1ZGE7grdtIRP7ip9lWW5suJFc4ruhONF6qa6uzdsHrHupKHRt5Az10uWiG8Z7GanW7amNqzG57B6k/uL2Bl7Zg572HolYsy5qdMzZRZeyq4PDvUPnD3okdbPjYKC87v9CFp2qsveSTH+JsGR3QpkX3l2+5hVXWilO2lKusHjONlzW2yUn502/Dd+VQIA4L+N9wXby621GnqG7/dzWrlW+tbv+r/7r/nf9X+hgIDAk58Gs6RPuCmOShYctPzQtOQJ4R6PezzIblcc9HD211NFEx4c76fX+6vOeVf3NcEHkkYl7+zmuN3xosGU89OjVhd6Nn0Jt7E9FeOftKehp6HcyO0yjkYFC+oGhW5wmiM1q7vf6KE3rD9vapT61jnDyf5S5bosC72zQwMkW3eUrfY0thOS6dzudVuv0HFzefKIrJj9IxxnSs9ZLewksuyjS6zYTp0OY+8zu+zVLcZbXfZx25ny7WCqRFPui+zZ3Y6rPn7eeSy7l9WStIwhpt6qavGLdH+Yblp/StanSldB3LRq2vDyg3vlAwKipOO2LBi145z2g5yW9RdfbvjUVHkh5VKXeguBURV1RjH3dIPy53h1W9N4cNyHLEljsfJU4XDnDO2M6HGzWk5qvu3ddHJM/7ChfSLPXdE6tLLP9eKLY3eZ5k8JX1MyQkIkLvWi1sbqyzFSd3PMBs2Oqj9gM/fLheR5zvrKNb1qPxUWWK/WKznUpn7VwHXkqzWp6t+bvh1+XhUkZjF0l+3JfYcT/A22yVmt3nUsxtzPdm5cjbnawDqzK4NGlAbeEvat++hm9+aWbkpFQojI6IL+bq7r286fnb/rjsrjdz/PrQ1Me2fSdL1q99I1y269UmjbuX7xQ6kV917scTznoGu6PCDjlP++pVVTg0QGL5IwHrF9zYSB27Jl9FZ7LNTuLbSgyMteLXT4gFrDwZ6LHi3WuH9k3NvWqpk71B6/XHdmTZWW+RuHAcbdXotHTVisVXo8rX2E+QTdz6PuFn2eE5hg9lQza9vowybnx329J3Aw5vyNqc+S9Qs9/W9OiX63XP/ntNKPKXLZ8bdGdT1QJ/pznqZB4ZaTqxbkyX4IHfOh7WGZ5Sm70FqdLp0Cp3oq6m08s0JU8e7zxMT8yfu9Cxx0biWfiTq1PtXLPvLLpSd6PWuPrrpiLqlY9CSi/eec7bu2u7zROrfG8dP6V+Yj7/YaH/GjZdheF2sZo+H74uZ7PqpL+b5IfHUfswuPTSa4hb9yruoXcdOp87CXwnvz7y/Pat9+eKylTGDxpwdaX30nhpg0XnrfaNNL3DBwwVyt2y+X97GJLHAp7ThdInty+dzL4vldq33cej+av1X43Ycw4VUZzds+79ONXf52/nCji1PVrF3XZ15PXFV/Vnr9Hs8nzdXVk33eJTz0PnNjg8EYuab4s77bYu/dMJM4vSHusuymkti3AXvFRR+Mq7qilKwZMV7HXHe+23rnDRHT7QO3z/2W4az11smkw9DDRu/k08yaqen+V1cmb73SW29JvmGvadWjs5zG3rgp+njJ7ahFty+vGaTj2fVr4JDi+zs2VkyqLh965N3jPoOH3zZTsdbrteyjwuE0tYrp+/wnW5kNajPLve7gPE/ZrMen2cZKYfNbxj76eG+6tu28k/27tWS/eC6XLOeuM3/loflpplb7sx4KvxH2WuPbkZgwavOgyzEXfmxtObE9sF7DMqnv+IPTppR0eho6nzqyVuHHuDKPQyGjNA38Oj7kWCwqcBxY25o62cMud221mGWaovWIo0qqCVLdi7x35S9Y75mQlmZ04Mn9DbMV1e52PC3rked7fkxpD62mLQfGD1q7Or/vWWmNlKlGd50OzPQ/cODV9LXiI4ZdU2r0edK6X982t8HxTPWnDDEB4dZ+K/IMjJ+p5i8OnfJsbeuGRP/m6uCEhpHWRlO7frtofGnPW0PDLiN0d8rJO918Pyvtou0AzUmBXXpEVYfL6eR73q/S3/KuerrPDN9QBUsB9YYVpwQGNsgm3HtxxemOoLj30OLoUTYXS95O9dEYfjtS/Ilz4r7izvBCVeF6u4VZPZTE9p38lObQsP2byE1B3a0KskOHnA7yFez72XezZmr/HR3Vkw2KDJ1yYjOfxIVuV/HcITD/oP7A4QPnz/UudLoo4KeR/FlKesEo1aPq7dbOH2+5+F/ruW3shY2vesmrfM+t2GU/StCh9/4yg28WNcOTpVu+zNtw30sv4nLWMLmYNdcnFveZ02V2pULhkk+iwl2PeCjGDGhvGRmucOngkE+yr0ec7nN9dKLlUK+COhur6fJLaqIjHlu9umM27u5e8fBRD6+Ziz372fPoleeeN68JHf32pGVSUkmzR8356zM/bo7s5tfcufvudIFSiemlTaF2EVcKB6wqNROWb1Xys264PmDiwgVHup26oR0TOVeuz41LPqMMrtbZ26TJupwJPZLv+29+nAEAAOCfGOuxysbpveBu61A/k16qQl9+1/89fs3//v//1wQEBA6tim5Z0vG61zY1p4rsMwHDp63cbSkv27ryS1lgyNV+nprKvcNL3GS8L5dmavjM3z13j7j2wiwVYxN54U2HUxXcHTpTh9qf7ldvp9eQ2uPlals9h9d5R3U7l9qtb5O5JDFocEPCJokjpudLtkQVPBK641SSmPctrtZ4wYE87bCoiu+PXj99HBX9oz58sc2d7jWSubOcW4Y6H1EWqHkp8F4t5Vu+xybb95veJt941FdimvKQcRt3HjR/VtPQJ926+LaA46arK/dlfEz3NBb99k7NIPCy5KkLyoeSPEJu9s6KcT6yco2i7hmdTyt+tk6JePj8RKxBry4CPSPK5yW4jf22zLsqrLbnjmfbb8SlDrgwO71jZtUKx1nZ8wcuPJaRW1GbNiOsl8MY05Z5EyvO3CjYU7bCO1r1ct/MiJ3V+WtHy4fsXj839u7Q5Iz+e0zC91dts9zxLGmAcnhyx/12l0iXBRveiLbNqpxpIG47zmh1x8u+WtIaq9pbxi2ae0lz+GHFIQcEZh2VjQhfNkZnUt732q5vNq/PcRc13rR0xPVXN+86be9rJHi72ano4L5Aj+JtWpNCltydsW96j7Li80u8zEeMtU49UbNjhsbMjaIzY87oDnjw5dGsn8fnX82pvuK8pMLrYuj2yLgRPraRXzVTfcM+FXX4HS5VHjLvwDr7nrp5ezeZHhyyv+2FiK5brdOCYwUPHHPnNvdI37DLJiv2SmzU3VaVsJ9Xv30Psrwf/7jreo9ZOzSLs6QlB2/1UX7/7InbCn3/0Mtd1mZ1zjY06xojENilTU2j8sy0rs4tX/ckHckY+fPSWcFbI0pvNniKqdyWPy6xWEJWSWPg4cozkSrR/oJJ04VzT5gumGLz6q5Rfur78t0lgf6HUo2H9XMKKCzQXNv+YJ5Su/fgUfe6a2u5uBhvFjmvGFY7puuTe+2HZxrdWGU8d+QqxdWLjr/X+jm9MXfOx6r4M9rpWeNb+yqWORcf6pqjcvWZrEn0KOuchZsHrppnELQh5+hSabUK26ivg5SVA/M9NPZVJshvvuYVuX2+oFlJ17bPI6OM+kZ5Z9sGZcTYyXQ87MgUbdJv9/aRM9c84eqb+mRkfl/z/RWbGm6O/Fx3od5SLfLtPdWZpcYfV+XmKl7Y2riuNTDhelLHK63dzdvul+wyrWpQa02KGDBmYFTf2raICfN6Xrh6V3VRdP5yeSn5Vakn7h+USo5c2Sf96eJ0/UOPthpVfPavHXct2L12zNodSlY9i/LXbVT3t7gppSc5x2dQ7r3IwCkTd/kveD3+emjx5mPjG1Osrl6+/LFgQJe1qguHeX3aVZ9h5CQRsuBlcELuhC6xPxLaLXpUaDtVP3VLfSdkKt/faEac1Ptuj+qm+m+SONz84GLYF6EHb6u8q6LdtwUmGc6uWaOkJdM+ws1spImvn1Bo3JFXKsaeJg8yp0k3fZTUMJLUzQ+IaDvso632Jei9zZHKGUuyB2gF9eu0kptm/2aYfZlrz3Oe3kGy3Q+6nNl+9MXec1VLRTtCZ4TG16dL3RsZZTbZ686yIRNCbyy3uS6ueuray5dBs+ucqjzHfDoetqV3s0TK48oLY7TFg/YumpbVGRs/aEJaqdusYQM180Zd7LA6O1y6eVL61I+NX1/cSDi1S+1cWf/Dk8sP+nb9tKv3bodxzt8fTuv/fWWb8EarlJxke0fPJQ/VGpNf3U103BPasts3vvHFwSc2TrcLGg1HNurYxok3V/Wql5zgYlezpEujQdvFlXuUz0gZSifsrImWKdUcFhCek/Fkk3j/vEfHsg/EqgWbHrP7Lj1vefWxIg/T5UsdF4WrK2X9vFNScWLYxqkV0y9rh8pGD/lg3P97W8qGpOU+W2Pjr8wKtTdtd2jcFbl/68ugo4XDY0q7zeg1wuHwVevALO3VrilrN1q76a0L0XJtLVq+PUe55+Snj9boKI/ZPtBo5RydKdJvFlpO2qeye5BAfZVTtVS4RuuUSu3uN64nr59m+jb6ReBw4ftbuks9Sx47cVLrKqGq4oDhlt9rR6Y5jGzZfXuRfpjd4QEZBk7l2Zd2JFqaTj2zK1agIGz5+bHN2wKtF2d7v4zRPLznZ/nlqLjh+j7uPd3bWxevPCBXOHu1vM0mxV4mnr2la6NmCOn0vyLfTyRX3yIvy334fMmsH/v85ZsuV3dIyF8e5//XZ8S9YEuljTXvH+2c90KqYom9Zt9Skeh/5zMNAAAAf85r5EnxF3Kxj3/28Zm6ZmvH3+p/4V/z8gJ/rf8jBQQEuhqvNkzaWOI+TWW8qWBHyuh2XbfKPZ4j9ENNXPw9fHb/KBu657OTj4qo8MYXZwpS040SFhl03ThIpFllj+C2N1t6H0m+mZcgInFyolhA8CDFlF6SAz5ZpHb9ccV92joL7flF1g9PxU+tWfrce1y/krbmK1GKIj9kvM6+/bknckmdfHZGvz2dPUvsFEZa2pvVbt5REhKW1l2hq11dSYNQv9Hjtw1ZPPPwhm7Scmarb0wclrv/RWZ+p+/WoKH7DMZm3t10dLqRfozwXpdZz5f1FBAQcKq+3+TXNNlt648w+9y9I4LtX++QurUiRvaoZl7/aXHXv30P+NJt/1PN6PXJmaEzAmQMngkXKEoPyzd5siUxeL3z3HVzZULSzPZfNC9p/yLR0mD36LV7WNnueG1py5COhpLHq48tWnxj1uCYTsu0Uf5Tj0/WNRA5k9ojUjXh0huX7rcCC7sN7em2Kq58k5XrAv2XKgveec70/xjT6Rc6vankXrxvy+jPfq7HSq1mLO9YLmrx6UWaaGk/oR7DTo9/rGwjY1UwdaPChEsmzy6e9Exb5WE/7+6KDPNcB3c5mYGV/Za5KHtP8Lu8ra5UZmpRF+/azV4z23celbxaO1D0lbrtwYjrJxfOFj4pnbd6tp27XsGy+up1FtGrzpeZtpgaCYuMLWswqh96Jjd746qIeWMOKrxPvaj8KFKy66QtknX369ri1hoXNWcLVYc4G+bM+pFf3v3NUFPZTPOkule2o3uOn5VYubr+rdKV6ntu06fuvZ7h+DlX1E+9Si7Ovj1xwPih59NWJ7VM+pawss1UXeNZ0Jtxz99eVhkkFuUQb79ccte05/rJqWHbtrekbL4tmiZ3qczvzqPNa0yUl5dETzladtez1PZk1ee4UScKszztBfvbLxxwpSgxripLe2KPipNfzFbdWP+9Y1tYd233iQsPhe2V9nt21HO9m2eM1nXJNT66oWZ1929e+nThZuGE2/ZOs/fJe4tn391yqd+Yo9kmZ4dGTgtMGzjYqnj8VV8Dy715t+dMVbn3seOo5aABr26v3aFjWSO09/u8oaqj1r2aUbezLLLynkrmy0PPh59Otvf7POGL1qyYuAluKaqiY0eY3NXX8NTPldHbbOKZnrCk6cCGU+Yb99nu04idIXdBb8Lnh7atqgscPHtYTi8esnmrx3fr0RMX2XYNSvU1WKGq+7XseIFWoqKS5GktA8NnZreXyMnMetJN94WcX8z1w98lo6VsqoICY0fJezf5aT3Ot3rU/izh6Lm00ZnRn3XkCy0tVDNzPHI/OontnuGx9lj8KINXL3TmDzs0505ErdOWhAEHs6eve/lQ+dXDu2mnJa9WxNavq899Z11+vP3BgDT33jKdtaOPuDxsaZ7jeePT2KTJPZIN00yvHP5ikrsoRl/S4XP0z0YbT+GjnzulRlWoxER691I93CvA+W5pd8dvAx9K7NAcOLPnqzP9dhq4F4kp1rnd9m4fXl7waE5U5czq2wGPnnd8WJo6eWN47+e3JM+cn5qUeyro0YeahPaJn912zjb4fGtVnERmcI97Hc+m2ebOqRgXXBTZXCC/MKvPv/l2CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD/r9VVRP4/2htb1n4x7ze1JGjp503TclZtPnZxSOXuLJMFm81avlmGlF3POX1A+nGM8ZT0DosPVVfyOv9psNRfG/VfXTEBAcHPggICIUaLvoRev9XnL2OCAgICwoJSgQIC0oIy16UF/5Cg/VVAQGDJ39b5nyezP+su+0u7ObLrfxqX/EPIH/dLQEL493r+0zoFfP7pHuH/g8R+XWdCuldCX6eYZJ4zmfilfu25sYH/4y2Cf3nPxV/Xk4BAz8V//H2hf5Dr5Oyqrr5yqe/B4el1i971cU1PmmGlZmd/snu3BfvDfWJ0ksNeWDtqZIiLCggIdPv1+ovfV6v8743/amcLCAiI/12+wT/Zr0H/i/s/4k/6ir/aLr9aiX+S83te+Q/9Px6bP36IfxP9Q9vjn2zv/9Q/Omf/yJ+t939X9/+i3H+W93s/f9/GLv1q1f8384V/vwQFhAQFRP62OTfB/3GNCPzdeRMUEPyPcyn2t77Qf/SF/m69ov95/YJ/6Av9oS8s+of9+o/t/rrQhAUF//P47/f9Yfz3cRD5Na789/f6f8DqT8b7/mrFfn1Q23/3Bf74w19J/E8//G2//sPvdX34v1nL/xOE/u4e9I/G/3bif50MiV9jEoIy/9PvdP4Dv+dEtLonhEqJmEv9yToEzwj+yhf8l/KFurQWzp2opC7/Z/mLhX7lC/1L+foOoRu97mwa+qf5Ub/zhf+l/FfHj7x2lQ9T+NPj8+H38RH5l/JVRw3cKlYmL6/2Z/kHfueL/Uv5Q9+mteSWBVX+6fq1fx+fbv9SvtuHHi6rDng8/NN8gd/54v9S/oTIeteJR5/H/ml+3u/jI/Ev5WclmL/sanbtgvaf5d/9nd/jX8rXDFL9ZrLFZNyfXp8Tfx8fqX8pX2qWh/OTlcJBf3bvFAz8X33CAgD+Edlf37HCfvX/1Tr1/9Tf1QvxUoJ//c7X/dfrv7JW+8t2ev4X5gMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOD/Yteugry++yhBN9BAI0EDjbu7k+AOwV2Cu1twd0uQ4A7Bgmtwd2+kcXcJEpzgbNXOm/uprdnN7DvPc3v64vM9v745VX8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/z3M23307umDj44EDdja+3LHRgnr7drW8enjGiENvo4eUGvu7KERFrX7MLHpL989yVu2RanYL7cte/ayZseBJ785W/FK1Gh9Oz+LfvZs0OQMg1KunDn98sMVK1plPB2ra7olv91+eCpCmuu/ry7cLuqIYs3jTi45b96yMUW219ibNtPP0S+0+S3KmXkROxwNbNjrWKNqvWOtGR41be4kw4NOxIv3z12BAQEB8f7dagAAAOC/RuMneWeMGFW6f/evCaoO/Nx+xz87POx/8sCAoIB4AT3CfNmzfnKvuE26nx/+d6OEIevH9esS1Lv0pE3H11X+JijiqjkXl3SOkzHq27GXkr36vVzp6XX69Ms8ds2mxhuqLB79tu8PV6ftSVk0R5zLKTPUeva5wuDJYyPWGP7zwtTLr5y5lGblsB4Z+qxZEmt7aKJi226OqXI6uEvwwLvt99XaNvFWxWKlXr2v0fn4/gflb2SsUaZ75WUtE3b/q1j6cm1WRpq9/perNSN1jp3gu4/b8mxrWejl4w1pCiUvWHlB/9zZ9zWcNu7a0DMhZzdeK79ofPSAZb/trFXp9Z6GmWbv6tElwx9/Nl2XPtyyXBWOdQhTIOztjmWjVE3V4VOZHB8PZcnbPf3JVj2LD06Vevn8uXkO/tI+dv36AberhnQb+SZi/jazhwSdmNJuXfxbsyK0npZwePolGeNFX1EkUpWQT42G5jvQemPD4TPSPql9bmz9ktOz/VQvxuaFtysFdEjWtf6Kaetn3V11ddDZPAXDbJiSLEO7Wo0u3J76e8ozWVbkLPL0fsMXhc5vPn8wW0BQscKLYoU/WyRXkqWZImXI9jjyvYSPNvz5sX7v0P0X5lQbu/TI8n23VkVcl3bG7xUnxipQ68/Nm5pPq3NyQaOo8xItOlW0VbkbA25EapBi2JsxV6c0Cx8+zq4o3YduaFht3IL8Nz+szt4za55fZ6SanilH1buR4het8tuhui277Q9eHyHMoqCiC682LXr7Qaffg9O1KN1wRZV3Y/vviXWl/4aYbR+u3Pgg047p0U7uXLn4cP57HRPUSlT4eslwmV5cLvV7qgIdE3b9sduwzfkudwkf9c2fv6wNeXOl7LI3kcZmnxXQ63LWMc8qxyjad8mQYmNPrA0cm3fqwI0pykwuvXdO0yk1E9e58Hnk2ncd8l/+OKPKzPyb8g/KP3bppkGF+xQdXD/LwcMxTkY6+dv+4LLluncMXTv99d9riv71fcMiWdpNrrAx381vdkfsOTtPviqrW3wuurZlnTCHUmbvtqbU03s/Pn9cd/D4yQvHdwy3etSwGsk6PZk1bXPza9uzzJq2aF2YR71Ld78Y7fDU4MQFTiZo0mXrj5373Sob5XDTMu9+6H6q5Otbyde8T1KncfTr+bpk+L5I9Dczctx79/eAyZdvnhrSps74pb/sz7dk2p235/pXO9m6cqrCx8JnHvfz9wU+lk73R/iOCe/PTFsmXJYJ64q/7vp+c7y8zafUrTV7SqGQiqOmJBnzy/mCtycP3p8mpNIfc1J9Tj/8Vq2QBKmGVosfsDhXjbK/VIiwKkKzIq8z5coW56dYJcMPrDc2V9KtzavsKli7TO8jA7rOqrv1XPaSIWcO56+1dfLuz8kvxemcOLjEwKQLx2Rb/WpmnqIJaoetv3ffhh8GNv2xQIzyC47XW5o9Yoy4N4qHvC95bMeALi2mhVuQ5nzJJJsmn03SsWTmPd2fHU6Q7fD+ONcetO/QfvuEMuNOBf94J8WIXYv75R15rNDnqM2yPmw5aO2yjlGjPIrUrUrxcNGDP9853Xb0hYFNu4z5fOTb0hvuDPrUb/qtCt/eyPNuTKKpj2ZVb50l+pPI67PUO/Hj20uhR+dc69406ZqR18ovzl/3ZMQ0yQs+25km8OTB4yV33P2y++PUTCdWN8xYftqE36o22POhwMxlaWLlfD94dJd+WS6vSnG4wzf78lat3/1l0Q9zbhyZnehu6J9DBvZOGjNtty0xOy/enDTPjCxN7x/P+VeJCF8TVTv8rNvzE8uqz3h+Y9q1549z1w7ccSJ/jucRIleKu7bI34WWPtt6s0KhmgfeB/6WcmeW386Oi7U+Xmid2Lfn1WkTmPjYtCJ3kgV+3Tc6pFD0Qz+uXZNyYvwqv45clObk7ARfEq0dkX3PrRc/VQruNq571QohT6ttT73lj5A/a15rlyVr4NVtlw7F/qFttWLXD/W/PyrqjiIbK2f+ML5ySO2/ft76oE9w1nKFq/5wfFGb9p0PFmnwa9M9Jdf3iha1d9DMgymL9l+TrP/BhlmbvOtac2PRaJXmTBq9YXfYB4+HJ6oRkL7O3gaHh8adOmJ6cIXqkwZNTvmuxae+rVb139X9SMLDIw7/vC1ky5rl87ONzbx2Rv2jOW++jrrlw6IjiQvczfZyWsfo5X/pV/6P9A+qRI5eufLIqkmid8xdKsumoxFmTzmbPPdPUZ6Ma5278V9dZ2/Zdf5EjAa/LFi352CEwj92++5xnnDpozw/WnnB5L3nH0378cI3C/oNWd0lapGAi7maL6v5OUyRYkezLwpY+OTsxmgPfjr9JnLtvuvjF3kzukKCKmvSZ9v4qOLTMTkfnzgRcL5Q8QzTNgTv7vhr+ZoFQqrGbXfteuKtFf8ekv5L20yN2py43i7mya4LcxwdV/3hg+3hexd4nm7pm4qjx5a4kTjj3dqr+uzL82X+4t1hL2YMTHT6WoPwFQ5fqx5rU6Pd777N0GHYgPX9S1+cky7bj8t2X/y4t3yHk2HbxJ6yfWyEcxlCdibsMevyknD9Zi+7Hhq9/zdZ1w5d++PArnfj//mmT8oZFZOnrvyh0MLPn9d3vl0k2po/c9YNTTVl1MYU8yP0Tvn7gbpp06+amuxR7R++hAn/IlrBlmV3ZQ+5muz8g2MrhxSrc3dxuwU3m7T8nKRZ/OXzqhfetCLCxafjJzYOfJRnaOHzMd8kSNYtxYbHoRkvnj61/3WD0RfC5bn1LnDFtPKfjvd7+/xqmUvjc8fIkDVcvkn9YvZNvWV3tunpwxdtML1EpzLtt8+p3XJso3sDM1Q/kvLXkguun7o/qfSNdLM2vh2c+d2T/ZtXr5/24USfs3c+9K2UvE6h6FlSlLj/pXbq7zcdW7ZrU6P1xT7kylns/bBsW7sVWjqpYdCVKA0XLM21cffeFEVmr2s1rn6aUmueLOtY7tTEsbFblMz905ZqC/p3iJL6xZ4xm55Vvfx8xs3jMULbZH994XjiTAHFqp36c8/Zr48j1ZrTftG6bf1q5c1baO2VFUNTRqw/IUGZwvGTtl5zaVryhUvah167P65/1nVd5i/5KW3NgCljt9yLEJJu5ZNBG0ddqTEvaq/QcjPbLCgc9d7YWbcqH327fW7/Cceavh/SMVe9nIc2/PYk37Sn67Z9Grz2/Lb0H7YO3vuh+odzr1buKjNh5Pmqy7K+K3wm9PSn/Ttnbx0bKUr4stnzhnnbY+7+dMFLV2V91TrtvDj3D09Jd35doRepFzWI+WFj/sBza3uHn5vjZLq5PQf8mudL2LdRv23Rt3HZqL3Kf5+v0ZsjiWJsrPF+SNl2lW63qbw0XvncYQIyfR82e/g6j4psHB/v/p6Yp0PrPx35PGR82tp1Uj4+n2pB487PpjRZ/XuZ5iVWDp2eIHPNoAn90p+rlb7t4JkzyzWseHJk1VVvj9VcvGN4pWafWl7dkLZPiy0XS0y8P2LrkeBcJR+XbP90ysHQ7F/G50jQ/kXYCpka32oWsmn9x8aLjlZdFHy/0KYh78fd/BQy8sqANw3CNc2SKUWWxBtXD3w4u0ffOAGVh/Zaf/JCso6hHzddL3toQ+eAo5GOFK+aZ+7FtOPDHK43MMWv239L9vhwm9TZSsyd0iDmyir17sX949THdJlPpbzZLt6lWs2f9GpX5XOxuuHqndn0eMv90i0D+lW+F3VSxMHR3s3Y+SjnuHaXf4v3OMKxO/Uf7SqX+GrC8xEDmqxNsH7Ti+2NVg3c3TH67Ny7AsoVW1op/h/Pewy6m2zL1rT3I79cMP9o65AqBQ7ETbT88Muz6cfU+rZE7jEx572tN3PNgiRpX7fe1H/1qF9GZq9Z6NvERxtkHFRyTsnn3wyvluDNoXK1Bp3tn/7+ua0nsjVJ12jdN1cOFzizff3JVS8mhSu1P8zOEz2zT6wy7Nqlks+SrVlVvXmvNUd+3vblmxzxd8WOs7de9zUl9y6YFX/thr/CNFrV4vH91eXqnprQ/nzeNhVOD0wcv9O6sFU6tZqWMObChgffjGlScPucQqUjN9lxeuGb3I1HHw8ovWlWt1ZpE+cNSDnrau6bq4qMib2yQre0sdJ0a3y57qlMHwsEpb/419McffbcHLpq8+bHt34dMTtc5bNzW5bJ2eh6nF/jp034cmCjqm36H53betORaUvjrMh+JFyFO4dnddm2/0vNVyUipBm8smGGctc217/WqXnPDtdCdwW/T7k53bG28X/OsPFW8ggVr6Zcl/i7bbsP90qU7Pf1bep3Whsx7OI27yt2zfriXJeo90tHiZ8wWZ07w346N3vMkkU3PsRrXbPWxkbH7q++saTTw4312mcNCvP9snFXf23XsO+rhJUmfTu3bejUbjHW5quS8VC9Gtd29A5/of6bSnNDmx06kPFjz8YFti/89GF6+HHBz5es7rji7LO6kfMcW5ErxaR4q18OH/LyybRJA2bML7yjb/pZOU4tapGi/4DY7872jlagcaKUu5M0f5e1wKGDh6fdOL8jaapM6++FSxycpf+sTOUmp3n2L88L4H9jZ1uMr/OuVclxGcvX+JSh9Ytl/+z/8P/JAwNiBEQMTBJQfEqL6pny1v6QZFaO9sP6r7p5skSOB8V+yFMvz9a8Vwe9LP4q7ozkwfPyTr8VpWPhLr8sHN9zXs8IVY7kylNtaujN9Hlq7++bYk+xtmHOZE9R9kqlgadHDAv3uWmDDYMTrQiXpcLDOJNizjsd0P1+wmdTYwxP/6z1/A/Xfpz37aImv63alWBPhQyNXtxO065Q/8d3qiV9NXHQ+Cufl4+MMCJfxCHhYr9dMfRu+0wLk6+OXj7tz48mtrhytNCxpm27xuwdK9uzJglHxUhacda9K3+8jZYjqGtwmphXDh/LGrFAsqlVst8dlDXvsegdlnyuWO1ol8Ufm0wPmha36Z+5Pl9vHFJ7dt2yWZNdWz3xX/4sAAAA8L/Uk982D/g54bmLNS6NHrj2XLYG/+z/oP/kgQHxAiIGRg7ot+xr4+NdY084HbozWt6/p01sF6Fvyk9V4g29Pmty3A3Ln1S5XHJjku1zy3wsGa/00o+Pz64YW/blxjbRZ+b6tkDkJRfCnft+1ZCQrRueDdvUP8/5MUNKzUjxLz8bAAAA/o+yJkHtu7OuFM6aO9WjLasnHjv3z/6P8p88MCBZQMTAbwO+nX4t6ZTtsw9lnzq1/N3SI9vcCE2ZpH2njHNHzYm1r8Di44Pm975xL8ywybvy5pvzamG8O3GHxOkStmbGTXFPnQ/J1T1t/JQRKhcNvLpv54kFx1/fOh2r6t6Eg7PG6dLocfhFtTuEWZ517OB5b3JHeTKx/8jwMzP8VCxSm/n7k7Qa1f9RtZpDKjTMNe3LvVoNWifdnnnp5YIZTjcpMqje8q9DX9zrdWHo6xrjMqwaHOm3CRv+5RoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/Bcr8sDT9jIPf1c6UZn+ZGKkL3Kq3a1vHp49rhFQ+UPqvO6dDPjWp323M49kts96K8vaP2H+Pm/F4TMYt7Xb2LVKzR/lUb6Zn7ZO8XIc3y3Z8uHSxa8Ob7Qr+sCht/j2Hy+8KVzze32sX/Tky7dzOXTa+qL09YWDJ3pnCL6n3YeDMdbsyLw/d+fOR3c0PzY07NnKX+b9tuvD0j4mBWaPOHBEjsOI/dwUGBAREDPx3uwEAAID/FnlfnA/q1zI04eOzrbcP7J393T87PPx/8sCAoICIgTkDjtUceen87cTlri6+sGbS8wwLJyYadrPA+JBzB4I3xvoa7n/87aagZhmeVhuapfCEsf1vNPuu9K3LlTOHrr30IsrRrNOLZYkS2vD89flxy0bs3aHVxYL3i4QZF730s21FZnx3L9+lG9Uzjv6UeFKtzM+zRAw3oFuVLKtWfkoZ3LtRYLWKs8ocDNP9Tf2XneceWTjn3LkBby4V+Bw0N9KFof121Sv784wXGxoHt5h0Pe67Gf17z4nSv+eO4xlmXPp9V7zCt2vc73cu/u+z7zY9H+9Ky4mJLk8peLhPmxJrB6RK+8vkbW3fvMl/of3EMV/yJbg14dHeucmqx4pXOE/JOAcHN6iyq9aYpDMyne6VZvTDDAGlA8LUilY5MFvCqCmeh7m5eFiJKWUStdkea0T/Gdleb94y8f3jUWUyX/71XLZNbUKLfcpwNn35+wen9F+RbFRw9jjDtk06EC7r2JMDUwWnTfJ+9KMiIQea34p/IdL9+3de5j1bcPxf61sNyZE0uFfXpP0eTx3eO3OCfluKFP79dY1BQ4fOOBo3c4egCaOKPr2XuliEGod6X+hbbkz90t80in3n10kn8p8fXT1ng749/544vNu/+b8DAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/eYYWLny//OADSV8VypQsXrLJKevt2tbx6eMaIS/3VO90ZtXuc4dLfa2WMFHdyc1jzN7/U/yTVW9M+qtJuVOrx+66dq/BhV1Rk9ZYdOZcqmsJ8ybYefz3WqOPlal2M3jM2A+HTpUemWd69eVFu23YkzjHlaZ/PEhfonmZJ+XiRW8TfmX9+mMrNfv93uqPVw6UjdZ2xI7cZ2o/j1f4l4etiiy5NvGfuwIDAgIiBv673QAAAMB/ixl76wftOVB4YszgfP0+JM7/9z87PPx/8sCAoICIgeECes8u2XH83r1pNvUvUir3+Pnze8Q9HOndqnL3/+XzAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/w+FbgnN2HRWaL1dX+N+rjj84rJ6u7Z1fPq4RsjQ36s0apFq4earbTOOyNYkR9PGjU8sWPfNwDUdsnca1LdG0evTrj9Osy7qzmKbU0Wddupzu+61G5xNO3thp2o9F0Qsnevp84CMZQucSRi0r+moJGvHbmr1OHWWTAPHhX6eWrHW9wkLZYv1Y6Wi4Ru0PNGmcqTL4XM16B957uNNMyveiFhh/8Z/7goMCAiI9+9WAwAAAP81WreIECvxtNOx56292vrgg5Tf/7PDw/4nDwwICogXkDIgOFXx94/Hrby66Uy2emHOXFr+acPl68mv1Jo19ul3GQdnqv3oRMk/W5+vmvhJxOn7jrwc9uHt3hsVw+6PMu/w9MDQUUt+Onlj3YLv8o06WuFrx5XPm2688iRZzXoNZs+NEjKqTaNBFy5mHPNw8ONEF640KVR8wy+LY6ROO7Rd1I8No0za+E3x7WNHjs63vcDTNwtbFF/as8HsZw2iHtk0NUmbTu27RMrbqOaqxdXPdPpzSu6GU97u+7R28IAxJbtN2lkg+MatCgNydslS88zS8q0Cbxy9NeTbb/rNWdMwVeVL+aJv/X5U4bQxDs1L/svw5qdyPanxV//qg871Lz5hZ+Nfn5bYHvbNzYedm64p9XOjfQ+uv0i69sdNZYdvHRd7WtqyMY/dHLL978BaQd/V7VPs2cqJQ3otmbSx9L/8+QAAAOB/yh8/TsnTJlHvkc3e9ylzaHyL8P/s/8D/5IEBMQIiBn4TMODjhFPr6wxYOe/PSVPHr4z/Y+MGs3pUS1Lqc9Pf7gzrFPm7Xj12Lo05+tboG+/qZon0tf6Xp7cf9x6Xc0yzGi9a3z5ePVr5D4s+1V9z+fuBc8N+2fVowvvME7ZN/yvm94eLp4lfuMe5ki+OFWhY4rda33ettvdfrgMAAAD+K40onaDa6VSTB898OvFixQHbRvyz/8P/Jw8MiBcQMTAoYGHPk91Spon24e/yywasCMreP2Xodx9W7psR47epl+ddS53g0rOdFwenyn94XJ4+kYt/bNF937x3ab7+9W59+5vfp590pfeYdP/yMwEAAOD/aKdj3r3+LMvl8Gu33v/+da/lo/7Z/0H/yQMDkgVEDAwXsCVjhvqVA4OqJi98uW6d/NmrvdnQc8qhHxoO/pfPBwAAAP4n3A59WGV51zZ/N0h7Pu26SG32/7P/o/wnDwxI93///j/pk0P5d6bdmWFzhocFf4yZdMajIw8bHN34Q6GHkUdvGbK+9uG1VY/0C3+7WeN8lQdXbfi50Pedyz1rmDpPnTv9PndacXBt3xMtyxwvv2LdyyjNn0T5/a8GYQNmJTlbM+WHYlcHT9t1d/eMwy92PkoSa9aBucv/5ToAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/H9h1/+jdsH/1y7PxSsWaz18Nil1v17aOTx/XCFm9J8K0e6Urv+z/eu/jHu+n7mgRYeuBi7+syV2y08rRkXO8i101ar/GK9LPLBpl36G8mVd993ra/NjLK3758uyPdaUyju6xrOK5zX8m3hC7X8mot4fe21t1T9ys0QdVSlywT/Q7q5t0fTR9X4SZa3dPytSy45liNyYOnfV9h1O3lv9+u1W8kQn/uSswICAgYuC7r/9uOwAAAPDfIUGSCfEyvj8zcP2h0DA/1D0w7J8dHvifPDAgKCBiYOSAVyPzhC+ZZ2jsWs3/atFn5pQZ7ecd3nD/+Id24YNvxvi6NqDfwIPzxg2cPmFCndFHSgfXn3Ugdt2AxzValDi5I+Rgy0tp08f8VDRp5jmHx9fqluLPx1+2JZn8Lz8bAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4f6BwufUthzTdOzfR/NYn6nQ6urverm0dnz6uEVKrwvDbD44Pa7tqRqGMGbOlT7PuSLS7W7+rdqDThA3p2tfpFqds8YitynWbWS9aqzuN4zxcnnPJ8ph3Z86ZVyJxopTlIvfYtSNc/oNXXuUv+mvWak1LftkeOvKncy8Lju3eLO2y0H3Fwhdblrj54bXdq5doHn/ixnq1qlTZkbjd829atv+t84V/7goMCAiI9+9WAwAAAP81wnTfMrhRotF97l0bOaTxp3nb/tnhYf6TBwYEBcQLiBAQOHhipOi//JR25bJa06pOS7L4f6Qn75xJ+mFb/jedFjweMC/zotQ30l5oN7tmhhljNvybbwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD+31V60oAwyy+Vuv3Dj9Vjruswdn/2ZGnqtnxxd+nUn4KrnewcoVabNp9aFKq+vfO2cW+qVo/wc4O/Sk/65e/bn9vei3u9wtdk9Ue2Gzfiyad+JeLWSZ61VY6+fXJljlk6csqAv6+XuRn1zdmp8a7cXZHg7YvZdY+e7tSs+N5DP057FL3Ed0E/J6yasmmMawkzZur/6Ned+b7t8CJX3/Zbd1YefPjwj3dn3fup1LGvDSpufFT76Zt8l8NnSJQ5zl9b45y4tid6hd+zJB+xNEP47MOznBi9bGGf+xUq5Lqeulur1HFTlIlzZ0POzsNGNl7QNuPHca8WRyx5dXGi8WGXLTmdquS9YunizJweUGBBkb03U/zyudbGEUcP1xn69K/Mi8JWajy0wo2zT0oMn761/rs926uejtnhzdbpV3N9n+br2zYv0oeJeCfS/vD1Yg34aXqi/IMn3ykbuW3xqDPOzU+4eFWK1vPeXPx14/zsKU91uZRh/5mWPWbny509fa8ptfMnn591Rry8A77ES7C9weSJfVM2mv7jp+UPDx0vMThZ4T+TtMqfPPeXjjOGHLjRZnPM2TFePpjdc/7U2D9ef/g23vCTx+st+ZJ2VZkGwW0fPro8+fOGWq9udNz8YFadsfny3txUdcvldHFexC7T9GGxvg0SLp/f7l3VUeWbZy0ds9DpSNE7DBj5Ndm04BrBUW/lKXlj9/RuDfM2fxllV/wtV3ZeOfT3ifNdNhRPF6142TilFy87MvNQzUyNL/51NvWT44sLv1y9O++LoT3ajIlV5n2D5ue6PCydIs3JZ4uXRtz5MSDg0fPh0WNvyRf/Rab83XvM7Px2U5kkuQtuv3e2cfMxSxd1yHmo2YjMsV/HKrk3yZ2sHbJ8PNN95cJo82o03Z3pVJ6Re7+5PCPq9vhJVie6vXRZmq5VDt7fXzcodtMTFb4dvmJgh/hrX429ki2oQOEi0SJkH9E2fPkGMQsUSJ7251Px8g+L2T/NudCZp7aVPVgjb8GJqXLuzFay/8BfFjd59rJWs4dzvttV+MXpHKUnvFvQItvB01FmXf75/O7Ge35ona12kQ41uuSJkazi9eXZJqZNE9Si+v55faN17Tq0yZTdkyK3/3qo06ByddNkWJx/6cgh2xpc3ti5x8Ik2zJ/O6Nv3tOzhtQImps9wqRvH2Tf2eC7SBUKTGp+N+OpoFzVY8Vs0edT4rjXTrdvWKP+pisp6le80azSsNDbK9reP3xuZkDUZXtebvxp4skBJf681y5T/4sX+3ycM2hHxZwh60elz7sn9a0UeZ91LtN73ZZmt6u9SFazaoeQVZVzBX9fKmHo0vqD63dM8SVtuvYlis78tCtKqmJrD3R93vLSneBXxeNUCo5VocCuFE3a1Mr95tbKwbELpD2Y4OCJ01l6ZupR81TsxJn3hFTcebHsifM7ulb5WqZ3nHepMt6anKrvzUQvX0V5leRz1WcJhnWeF5r68v6eb0o/TbYtdoYDI88d2pkp+NdTXXIUnJRjxdT8jQPTrlt2d23DY40qjZw1+lNInqDCHeMMnXqh3eoZxR5UPjxk1qwfw+2puTM0Qby7aZvMSXI/fIEETxY/Dp+o47Lh79rWGtq14LVGFWP2eBHrwsbaU55s2tDkTLRVQa+vtI91a0u3WtGP1E1eJtWUnz98c3Nbw2p5Xi2rPrf96rRbfk/7Mcm9797WTjf8WZjrHytOPRT4OeGdPE9qR4w5K+uyiacP5Pppd7t3q6/Gb1kpecvKh+7nTLluV5MvSR8mCW2WvXTPUz1OJZ4Wejj7/IdPWu/e1TThxZo3EqU6cOz9g0hBhztUe73xRuxtp1ItP9psbKQWU+ZNbxy05+epn7K3TDAj59Tfc/c/tDtrigRZniwK89eM0ZGDdgeMD/tkQuLDTY+3jVf+zdmtjyKn+6Vq5d8+dTu0MHmZDy2LnGzVsEvCuBuzzIwS9X7UTykyHZq5rNbEvcXzBp/NXuNWxr9qDE8yqvzEhoO2Nez8bYzO1SpufvS4fZ0nm0ad+vzxYd1v6xYa/bbL2iz1juQb/DDes4kxZnf6pcH+Dr3qLpmcqsKcNHEubI9QumDuDTMut3s94uKnnYG/tetUNs/JBrXXxiu+PMKZkw8WJc2ZI8elOP3q15x+8uuUw5lXxA7+ZcuWZrWb9E/SPqDXh/E1n/Zu0PV0/Stj7rRqeqrQ8ZKPvls3eOmBMQeCd5fauXPYq1Vt3y3cWO/lqgSLY43+YWfV2KsnTSlQf+2b5lvzXrnePG+S7u0mts/9qkvFSyfLV13+R6JCWeber14vWtX+hesWCxerwOeTYy/MeN22UvngPHsKpjp//XrrdhWi/t57/HcJC/7W4dKSfhH2NX+/8tzSQ7kutqveZlHmmjVWpelcYNu1O5cGvm7Z5VXiXIFlxlcObnPkbKnOHcPdHtLt73N7jpwpviV8zz/2fdxSa3LqJfHHf5cxwdZj43qNmZDgZsoU/c93795z7uMZn4pXnXQkaZyG61uVq3MoYsu+L2dWnjlwz9sOpdvWPHTj15Lnfm7XPVXSfc1PrEmeL+/qP8oVrVz6aI88TSKGDVjevmK/G4vXv5w9e2Lawrcq5XhdoN240A63fo0YPtmOPd0izo3cYXyrUanDXN19ss3ema1PJXt4K27LPRNffhz9vkTFaL/2ijyocs7CY4OT7O/0d3DiLYc2XT84++G7Hp1jbNzz4ECq+r3uxlw8Yky/KjmHRWp/uXXd2IUS/trzxqXB3fcHjYkYPONV2oUnT5f7c2vLmpO2hel/enSxyjUSnWzfq1S4d5VbT3r2fGHlqx8OtCv8IeR1hW1hkrWdcq/FyP4Tn9/qU3PX9PgV93Q68/dPxY63vns0f4Z4KbYvflu6YKl4f/76qNHdWU/DHRt0JEztzPFrDOv708JXPe/+3Lza+flt8yatF9iiRvNNDdqn/dLtzpj98csfCDPn4Zdlo6dETrT12z69RlwvVnVwv83D7xVImOrTuoTZb7TI+OhYuVdTU82JtPNFtkqvT5+ZE7l8lsaTNk3b0WX/ru31c+zI+OrKxrlBIc9GdYh0+83A7ReWVJyzN/XcuJNTP3pdpGr5arlGVeoyMmX7St90qBEzZNiVFsOWXTh1+f7GUssmRh75tGbTPmE3HNhX6/SnvP1K5i4eK0HHOGcfbu4RftXZTA/+TLdob86QnqdfJUmfIeOKWaUiD8t5fXyiiKtuLir8dX+mJcNzV0vwpW/UEa9HjZner2qKY0mWtdj6KGKSAVHbD05TNf83LYdXPfL30X3Ht14vHHZCsdxR0rfcmOlKyeZbW/yWNThx4SuJhpxetih6qjFFl8SPe7jMulNVA8N+vzfM0AiN215vEhonwg+h3d7svNS4wZRP4YseeTBkUu32hWoUvfljzqPX117KGDK/38hUcXomXbg659pStb/5mHvGl8GVIufNHOfnv16MSrs2XdIIm2Z/H7VFyxQtIqx9mKRJo91f4y+9OGFVvBPXM/2w70jCr/0vVF5/aeGF4NHX59+PWmz47+Em72674sKcLDvbbG6W4OCu3n/cb5twS6ZIpU6v65bha7VJg6pVHBh32O3VlQ83+jgh7OR0A7JEyBXn1xSzQj60yZzwY6cJWaftbDnlSu7wXedd6PTdpwMf10QLyJ2j8vvSqVIl+2N1g3vLO3z7PkvQ7UOXbq47vSFFjfpRP7xoUyPfTztKrQx98l2dNnEWH8yX/W7VDjd/efZ01bujIZlmbPlc4WH/rDGW9x7ZstL3vaJW/b7SxxRR8obpuHfMrxteNouz4cmhZwlqbIw47FW+9+OOJT6++1DvKSHrAzNXPrZ0zonjtyNmTdqyWMEcuSs+6hMyPlviZmvOJH9/7fS+Cn1O3Q9JHuvQ4ASPCy0cXGdNUNg/mowp2ezZ2JfNr799sDNq1uIPhmSrX+T5b2M619+VqcIPdSN2XzxvacalP9y5s35RrtFXlg05eKfFnwuWRxqfu8OipZHL7fi26Q8lT7Tr1rfTkjcD6ldb8eVg5yQXf1hVsGeG0kX/TDUha7n7zyLMnpaw0JKj9ee3LdGlQ4FZ8V7taRGQr1eNWnkG9P5UutZPKbvEyJ5x691vejZeVjJk86ZCrd5vL3ci24evG3bli5Fo/IEr6RoW3tDv/2LXLmO1Otv2wW9g407x4u7F3d2lsHF3d3ctDsXdrcCG4u7u7u6F4q6FyUyeJ5mPk/zzpsk7v9/XI7nv8zqvZK0cyVree+qPwI7Tu80Kmrpm9+Dyz3//7ebkJR8urFgwKnXAwyIhf916/OKAL9erBc6PUTJfufkNv1R7MvFA7LgnS12+sCnZ/YKJDwcPyV6gY4JnDw+nitNwb6KI73ud21Pz5oBDF36fMqLh0eQ3Kv9e+vPFn7bkLZzrdrFJp2qPavZn0yHp4v6ovr1azaNF2u76afrL34oFJX1x+KfZmx9lu1nudbmFexvuaH+z6dSmhfZG3JFsd7M/hxeJU+tkxxppy1TLOKnB3ye3nb2UckSJmZGHVc0UtcG2JvHnBFcPDM5yu377vNuSnjxR4l2+lhVS1L+xoU6aUf3HTS3c4OyRaYvTtR39oXX/dX0WVC6ROluTYQ3K7J54bcayvq3a1y417uz9cH0LLu/5e+gce9ZVj/F92PehX6olaVR12svo6VuE7btvWpuyg0YmL5q8xqOTI258DxUiX8Xvx/smKT3/1I7wDxrFTNnlZe7qQ4Z8W1lxXopjYdI/aHryl20vCkycszjam6K7x4aoveJRoowX84ZtGPii6t5VQfOzHl8U8+nI9j/HLhX51PgszfPs2NF9Z/2aiR8k6Hcr/71b6bt2ux/nn6TFd8fP3TdbisfHQ16f0/qn3dNWJ9/2vOqIanvn7Ck6I23auj+nnbEnxKkvy8oPDl5YduyMMav6vaxf8+zy1hUiBp6q8H3B0Wh1ctyM2ydzyBVlSgZ1uBYYqeCNNn0alJtYoeyD8kVKZTz748+4s0YU2n+/Xaa7W7Msixop7rhcLYf8/PjO7YCtl9NXf1w4X9E+g0fvH/Bs673XzVd0jzBwfqhFRQMSH78X+Lp5o4l9+j7NMWHnuflVbwcljLQryqbnzZrG3JJ56va778sMiLLvn4/Vny2JlDvPpQeVO7e89UukTo1HzyrU6VuOU2Hidsr/o0lQ7hzvquedPz1T5NJ5Tybdn6x8jiFfMt1oNSdNs5Ghdi3qeaZzhXfLog7+K/TkRIsK/tZ5SIw9FXNW7xVh07Hch4bOqbg/9Ibf0494E7z3j52x6xV8vHVvtFIbEqXok79agcSPPkxt9+VJ3iq/3tv6rvDXwaO75Rmwa9r3DecHpO0aLfWB4E6LnzQ8lGjo+CkdBlYsFXdVn74vLzT7LW2ev8tXHDmh8ZCtR76NuL+rwpzdycqu7/yp8NlBN0vnbPLH2/plox1NXfjUqkxjHu/bnnxKifJFs97slPdCgz9e/5rw8a8fVzea8anEz2/eXd2U8GX+GVM2Ho08OkW3jwujpyz9+nqFC4nD1q+zv0ej4+sqJWh/rPmAwz+9fls+xqzY5cfkjX8tZcOgha8rJcz2sX++PAcrxWu0r2+nhoO67imV68bJDhfqh5u0tnn87VOu3T70rFz11NuXJIpWME1QlwjX3zXp/+Ri7Jbr4yc4EHlf4ggPqsWMmX/lvlLrJtx9fizkws1rut+ffereiGXRVt54OLDsqXrlD05vlu168Vn37uX/q8CxeRd+vIxYO3OLx3/GaRclyU/vUvzatdTe2Pmajg+1+reEOavU3rQ9Yrz9Pcb1yPbwydCy6ZOOftQvxeveZRPXzprgcvPX0T7nz5Hvx5x8JQuEaFxm09fJdepdKH8w25e0QWla30xfKF/MtPVmbZ/zqVzO/dU6HPg4pOqp9+lyX5o1dMuMJZUzZln0MXLa7uPPf1/yc5Que+63HB9l0J3+ixNte3+2z7EHbV936R63285DM+oPe7ugccxC4bPGuVYnWeOgSGcuZbuwZF7YuVmvj3j815lqOQNb1gz/n95963qpUFO2Xt/eZFvhujFaLC008FHCbD+9K/zkTaQvgW0S9asaLcms+uOOT5sdNWhFYL6myzolKdyzXZmPE+O3idn9ZISWOVcf3fj4YKeql8b9mWdTpIBTBc/v7zh3WkCvKeEmLt/YoEj8O5H39QkVIlSWCWk+3W2T6lXvm63DNDgzZfHSNpNjzb/Q7kORJUPHdIo64WLJVdfiHfxzRLzFIcd9KN5k+8iRP1/pEfHg8mafy+aqFC/Og+XXJlYrHW1+pQZr87X+MHVquXC1P5eqeX3Di3D5j6RreOrsmRYJbxed3W9uo+dFckaJ9tezJM/qFljVtWXH/acyfukVbe+gDMkKhS5eI83nOfdqPj3c9mGLkbkyVFj9eHuz8u+vHIpy/OjglcFT0n4qly1P062Xci/o9y7s97RH8hRon6n4gRuFv4Q4cjjoXLIVpcMcr11mT6yPl4a23T++7Nkfg38fXL1u1603S2+psSNnr7+/BmUul3FEv1m3Eswo1K98nte5y/QL+zJOjsbVoz4s/vf6v04lHDe3//m0nXIdvRvz6qdt9zIUu9cvX9TVr74UXTCuR74qaXp+edPydIvki5NlD34cYuTXwJSfJpb7PGPKkaYVKnx73zXnnDd5j81O3631llzlhvevNvN08T2pG8UPHrlpUZv9KYuPLjlo5agbOfb/uDmjV/ZKJ5+M/HBq08AX/1zo02XkqZ8fRruQvW2xH3UORbwV5+WhnBUPbzvwJtfdcnczxSg+68WawwXTXdkXqm6s86VvZVzVM+7y3J8TPL0XP9mxrrn6NC/Yr3mlwMhlk14ssjZ1qQXxj8SOeG9V0RVBNdOfeBJz8JHtVV+H2Bc1xrE3UWeO2BCvx6C688dk2Vm8cqScUQr1b5MwW9XMi58eehplcbc8c4Y/fBpp9Y5o20f0CWpYMcGHDSHbvfpWeuGNiYkPRGh0oPqi71dHLf/c6NnW1vMqpG+a84/OjSMnezFp3sSEJYtO+JHlwvTJo8NE7F4hZc6qMbeV7lam1+NWxcoGBmWq0qbQg79vDa6yP0WhqhHPN/oYsvA/8Sp3+Jg29ot8kU7X7tJ53phuNx+1SNCrwcHZVftPnX74Tu9utaKNi/O2Z+7bdaKG+vH49o/zEcZ+K9giWoO6yatP/uufGL+MKLg88x9TkiUKOrVkyJmJm3eWr7urzM1IN6LHGR+60viZy//o/OnO5SkpZpTPHBiQqW/zhKUjZqqWuFWP9C12Rkv9LNHdRa9bd1l7If/VP9bmfd4w0YbuQQd/7xMh56nXk1KunnR03bq3wVPqXFuVduXk7be2ZElTYfOPqAEBNXP3HTHsebp/Hk2od2PJykdD1q54GzSm/Mdw6Q+vK/ZxUu4f00LGatuyVPpHXd8uWT+gRO2fG1/5Eel6hgFLYsy/92F0roEVVixf03JMhgu3Cy6p0zNi2PbDmzYOM7Bc9Gy1thf+VPNe8ecPGg/pk3nn0ziPPt5PX+Lj2hyFvue70C3/2SxnR55J2yFwVv0InWO0vF9yy8RuMd9en1lhXMG9mWaUa7Ao8qoDN243zDRwXvIDEdNMXbu71pwkf8YI03146kmzt8+f8mFT35+qP6tTvv7XJwcWnigar3TmtfNy7upxsE7xOOHuR88+ec6j5X9+r1r37xvTB8wM0XzepK0BZ9YMCjpTYFOpPvvuBHxbnetc3YNNN6xN3P+fJN2+P3uSrmPjX0bED3E65aIRIUImPFQr9tqgC2ODfkky8tCn8jGzRD2wbGnYI0MiD9x4b1a0pF3KxE6etFT2dUER11Ub/6Tv6fNzIyaoFpysU6SK9wuFzbPq4P3j02dPDOjYpVzPu41qf28zb3CKUF/Klc0fuunkP67WjzFr4e9Vf8twpFKHC8P+zrX+zzB35zfJmnl+40Xrwz+s/+rPv/bmaLB+fLvvwU3+mHd72IK7YXeG27ahSLWmNW59K/7mxpb0eX9qVDLqtg//1EqVrHqb0+1/bnOmY6WEyS7FOzj9yaBTQSnP5BuRKkr4hXcyXcl8ve761LW61Z3Ual6M3MunHEy0bfHfOSfkvVgw8EXaMmcmJYy8p8zpx0F5lzQoOOvn401uNg3e9rBLp5JH1n97GqtlsX1NYua5fXt0xgiB8ZMFvGh4u8GXnVsL9Fh6+OOXwin3rkr88Ny0yCXCHP8eru/MEHuSpTpaI/6IzNW/dZ5SOn/z3vOqPl5+YF7KnnMfVN6d/sr0cPOOHIl7+2LnCmHv5Rk0NceXvuF6xsia6WTy5knOXJ/XutfH6wfzxq2y8u+6ffe9P5120tq2rycVvba258TVke4VCzVtzKQ/4hZde29hpIp/x48eI9+SUHnnttkz4lKCRCsi/DE8X4yLMdp0+1Sh5+5yBX8ETPsjTLyUX1ZOPf37oprLyywqtrrXuvgzh07JPS32/tyzT9wq/evlpTPXR+pbpVzcoR23xznef8vRMsFJkj9acSxFpa8ZbqzN+uf7Fy2KzG93ptvzhwUqVV+VLeyI3G9Gra7Uo03CfVV6/r647NWozauMnTd05++3cqYfki7t+h5ThndasStLhlwbY188Va3VtZBxsrf4muhKqfZPqsSb36Fq/5bzt4Ya3SLh4IF9f26+Keu0gQFLe9cvnmNx9MyXE6d7+fbOohWhly9odmT4T8FNzqYs0/N7+iQxi8TLUy9Wl5Nt7mfIUGJ4z2Wz/tl07l62zgdv3QrucbdDtnHNL8Sb+7rIwW4Ly5QttnVM3JAB7RJlC/m27KGWNduvvvg20fIktX/N1DLb1bdt80R9d7t/kv53y7w9GOJN40n9Bm/b93Tvgqfh/vOCzX5pdJzbi5v2O/k46rznEUPn7lps3c4HjZe3Wj698adZ4ZLMKx862p8Fe6y53mDPw3svv/a+NHzsvZxzs4y/fHXWyHmVhoZqsC9+uWudkxcImeRKyt31anZ61npAjBrb5yyPV+LQ25QdRya9mzxbquDg6L2v9I4Y6tLeDdEadXoV52b/bW1zl2hzYkqO29Pvrbr6KXLeEnOWlgy14tPfYVKE/RSrXqFZi0Yl2jTnz2MZ5w37PqtzlNsvZzRoFSpnvOIZZqy82nBMhpyZl5Z9VCDF34Wr34wzYkTld+8uFL3Y7GTIvpe3FVnRKlnAr7t2x5w+okuUv961LF5vddUqC/a9jVbmbpII0aZur5olcoUM++blaNb39w3dr36bGHlgn8JJ1me4UC5TqEZlCzyY3zy4+NAYX3tsb5TndJQTLR9/Pztxf5sQ9SdkKXjuaGC0ePlHRPmp2vKGBf8qXntC6wbP/qqaYPKiXcF90iYcemja4lznS/QoMujWzGy1H/VrfPJu5KzvIjYbMC5/61AP43dMuqTy0T4bIuaOWfLUoiiH7hU+WaXvwznN16btdvlJuEQFwo3ovLhwzfGfS1ZZHC1R0/0rc1ZMHHJIzdq1Hhwb3XxPqz6RD0WYHrbA4NBdF/+VMm2iabmfnd2YOcXteDlCXb6/vEL3GssmBnzaXGxD01U/Erc+/VO23m1uhXgb+/dnfyaO0Kxp1bfzvmxtWjZ171I/NRifJcrcYaHufPhjScyNERbU7RxqSK/6+boOX1b3daqgRGWavJz76Ulgp7abn1ZsuPTB+NN1fx7xteHRW4/Gx1i1OqjTqzS7Lj7N0qH23ZS3up5e2OVtvujpYxwMvlimxqS933aW21L+W+jUE0sdWJKrY92pM2o1ajM37qS6Nzd9ivB5d9UCZ1M82t/xYMZM785uCZ5XJyBgVJx4oYqlmDcz7LvZVYLidk6R5tdGBRd8zvj+5vL7awpFjDnufKOGw/cWatUv5T8XL+4rkO71vKkL200sk6vBstJFP/YpsKxv8C+1eyz6UvBZrVTbki6pOTXskt09TjxssqPkwbr3ot1fnC9M2n4v1tT51Cq445FyWzKGWB3/YJxSX1L8/H7u8EkpriePv7VLo3vJggpcyBJ6Sr25B9oPWdWl7dXkIzNt2jI68pmr3edFibQlXIyLO0c0eRw7e/vikRIEh6sY78mPvT/qfs8xPU3whGzFai/OELZf3mwlLz1Pm/V5x/6xBud/XmlgoR73T3XrEnt+2klzTqyKEjHh+L5HesXqku5kuuNlpj5On2Vy11V/xr+X5Wm/gDV/ta+9//zY6Sv6vV+S9GOs3wcsSFv4WbXuab/cDV+66Yyoxfs+DOzX4PX0U71+W5TmamDflpPm9ygZ4eCevIX7X7lcO8z+LFHqPAk368Su7uNrX7y3ZHpg7g0TfiqwLcfgPbnepBpXZtqnMytKTww5Z936XssnFl2dpXfZKt2Pn70cLv7gJaMPL1ny/WLhcrtb7iu4sm2jB7HnFwwelbxKvzDNFi98eSN/qfKj4+8KuXXyplnF6y6vfPnavrDHBife2CB41KUFE7IWOhdr3PUSg87fmfTwRKQHsX4EdB+aPHyn5uHrfF3e8HXiIZGKBN2onbXv0LNnng9f2mbf5puvSjffuidCrDUXbue63yMg1uyc+WO+/DqxxPvD40Km37iwbMVX4QY+/KlLYL71eTLXqtnsU5Z6w4LCvQpZa9HuPr3/rvilYOckQ8s23H5uQILqHeq/TlIt1ZCMvVOn/VDt5snFrSv8HC1B1b/ztz55KumFAuNTDJ2w9J+U6XeEmL7j7ouJXXrPvxZrzfI8I0otuNPtdKQvZe5+K5G/e5MKH6NPbJmlQdxz7f5e/i7thpnjvqyId6f12xEtWq/YPqxbgbNJ9tXZPW94kX4pc9yJMGbTh2qrX5R/UfRzqr9ejziUte27j5+6PzsUNvW71dMznnjxIUfEn0c2evu8X7viJyaUrtS1eqYw68evjhuvfeNkYxKM3nm9x4b6KW6FLxElctafju6ZsqJ3so2FX8Z4WP7I5dU3yqfMXuhT7mwnm68cUPfRwEg/P3n3Zm2HpF+yPQtbJtzpSG9qbvpe/8yTzs/Wz35W52DsixfjBR06N+fe9Y0F95z/1uvh454vKs5tdOxQ2eH1MzUPyLtv86c7uQNLb64ZlDvNnwXb5p5SIkmERDti5U8fOW3GEAurJUm26cHUsfdXrn6faPKTDpFPRpj5T7rnY6/P3HP8Xfg+qTNUr7r9x4Y5P50YdOP0zc87Wz350f6PMJsTlB9UbmDaJqfKl4iX8OKz9Z1zFrxXoNGD+OOW3q49p26z6SHih//9ysyEa/vXStGqae2KhVpPbJLojzQzXu1uuu1mwjK9tqarlX/76afVe1RqlvdLr6nFT4coVul0uS0317SpsLXmj7EpEjaqOvPhgNo/KiV/O2LpnScrWncate/Y6VWbfnlXd9v+0CEXvtoXqUOlpglzXYiVuPLl6PtCBIxsGSP84ZExK1ytnfLJ6UMXBuw93O9H0XjDk92LGLN85LMbE5WOU+5W22Qr7hcr1evSvJNhTtX7Wr/vmlEB+x/H6RxvwJLiZeb3nLoyd6IGv+VL8HzimmRZcm85m79R/inTW89Md3JU1Blj5r/65XDUodcKd4o6cnbgm007m8Yv9Xl8hBb1k50oEmVfnp3JjxQqkHlgrAa3Mm+Lk+CnV+HuJx+UpUfi2JmfnI/X+Ma7CE/PhNpz6t2lvpuGfv7lUcJuLZ40Wli5aNJWZeLm35I6foQCT4fULfXzo2l1Ez2uNDlejo1fV83bPKvy+xyBm2JsTXyi18lN02dF+Pn3KHnOlu9/K8OPE4NOh5hQocWoY4sedQnumHN6rb/35axfNfh6suLRU5QImTDD+cYb2o6v2WNPq72ZJmfKcfPbkjb99rW8VOp9+1rj4rT8J1/U5Z3nVYgdPvb8RS12Td59e3HWrBmapiwyPM/dWntCT3mZ9kvOBtlqp1v+7Fizvkl+Gdvn9rebudL0yRov3dDe87be2hEjaYOINWqHOtf4QECfdjWOho3xIPm3TY+zX628afOjTZ0mH9+0/kKFJQ0ffn91/PWHCElmrTuXKygo45JWCWYW6h28M/ugZbOezI98LVuf8cUyfZ47seDeRcc6dCl84/DIJAGbS6e6fujViHl5/+lz4kvE1XGif/ijStgLOW/tKDlxYNWtaau9SVj/cMdwaw+O7BelRczQu1dt+XR8z7H4bavtP7hu+JTi83P/medQzlFVj8Suf/nBqBtDIv36pv7ti1kKbEvVtm1Agd773qy68WX2gq2V1zW7+zVE2eBb94a3OtNlbLLS7bI97F3gZqqABtszRgzxunK+7UOndejSfXzkP7K2D7mjRu2WPZPtn5Co15JKKx9sP1A2c6JfP6/eEhx77rp3v5ztkf3vk1WKNDk7qN2BGSk+jl79412M4+G2zq/8eEOvO/U3BSV/evNGk2SDgy5E+Rc/PQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/pfZ/a72kU7XZ33J+VvlSJk3X/ml7u7tHZ4/DTrZNzjxhDjRjtYLKr0uQerdWTu3vpGqRtX5FVLu6XT6SpQqEwdHfrYleUDc7xVnVzh0+PHQSet6PnhwM3/cF4XC19qYadb7iaUaNqzedO7txZNDJy37+//9P+1LHU88Yta91QnP7Wi9tt6p4i2H1Akxv/CgK1WS37h+5UuHlqmeLnuz89TgS/+dKzAgICDuv7oZAAAA+N/j65br/SKWix76cqXRsfLnDFmia0DA/9PDQ/wnDwwIFxA3IHRAvCvXl3V9dKdt+varK07vWadItSMTQzyu0CLW5ZXDb9TqvKfU5WmJvpfaESr3v3wcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgf1C8faVuVzh650nZzD/dqlIhRua6u7d3eP406OTGHT073Wj0LWBQzpnjDoUeML3Wwdb1Uod4OWfBpD6n8ywelqjns43ri3ePsfVrhjprRt+fED5G1zJ/hmq3OMb1kP/54TFPmrQcd2Rh1nHdzr2ZHrZepyIbP/76W/6bWz+/K5imX42IEUp0ilTnQ9171d7WWdbzVfthGQen/lpyWMl8/50rMCAgIGzgv7cXAAAA+N8keZTVrVZFTTShU9VUNfIVLFz7vz083H/ywIBwAWEDkwcsDL0qTrjTHUqlTVBgXP/sN/K9jzAh7p4s5+7Mrfnz8VB9so74eXbvtSOP56rSf17LSUcLvE/XdvLEz5ujFU5Td3L7NfdKTSnydPNvdTflmbtlUqY+vTZ/2Jz/8pb4u3cdrTCzQ4eJO29VLDC8Xb4h1581K9sg2+kveTN3zrlqXFDdjT2/3xsXNlnxOLOTVx46eXeDHuUjfD18NE6Fj0tTdSteKeXY0T9OJTozeWmJ3365dOpEhSHrR1YOeezKtSuz+t/qmqN6jN5HorXJfPjwxcLTp3wPv3D4wR9tluQ6+C7Kwqrjj+0a12Jd5eLJZv68vm6xyCcrvM6f98TF1ndaPeoSFGVx+UhDB+ertfnF/mbpWqRLXGB6xxPhe1Tee2PU6OjRL2ysdzpdw/VjO2xYsylasTpjBqb6beKef/n6AAAA4P+TJjNeln3ablSxVvtnRZx7rkvj//b/iP/JAwOiBYQNjBJQLd7dkYF1asz+3KtAnNqVfs0dc9i8swMHlEzx+d2KbwEt15cYGq7L6Y27690p3nHxnosxi8xcVGH1slpN+1aIM6p0i+uLGkXvcnn7jFB3K469FLNEws3/VD28bNzCtoOitzlVs020er2yHPmYcebo1HlqTI1yqnjncu2bNh/wL68FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4P/DbpjPNhweMute1ybd1VXqUS1p39/YOz58GnWzS5la8NVs+Fiu9b9vse1WnZLi1sv6eONECZ887enBf/uZ/1v2R8PH+0ZtrDM5au2WBXxqsaFE0R4bQ4cdO7r+09OjFWx7PL7c1TvulW5NeH3dk/j9n/ypWaOzTzk93F1i9LVuKzyXSr2pYOcLkLiX/+atk2LVr340cM/d1cPSQYd7tr104Sbr/zhUYEBAQ999dDQAAAPyv8TLztS0Vt2Ss0XlmlTVRq8Ut998eHuI/eWBAuIC4AQkDqkQ6nnhKrDFLkz/8UT37vUgv7hasvbT/tiRTt7Sa9OJOlwHbwgQ0u3f7TMiuS6M1f/UwdK7HeSadz5Tkyx9PoxQcHuNMuZP5WjU8UW7m2eFtnwdcLN6o9d4RjSbtWxm9/Pcl67cUX1q+9494pSv2f90yXKn+wXEWVFzwcs+UCtdirRmfbcXMBfvjFk27+eHYue+atX8x5OHkkD2avO3brtTcxb9GnPEmbMjx8/d3yvWuXNX6VyYPu9qnSN4YdQ6vbjt59cPPVUPM2rI6sOnAIdtelshatcnqximujWs58W734UX2L4hTd2f8da82PLgedmPRaAPf1c7Y5lbTuMXOpz15c1bif/k6AAAA4H/E2XvVfy9wZM6lYm0ib9lQL8mk//b/0P/JAwOiBYQNbB9QYslfVTZsPdzmQN8PQ2KO3VUi3Z2lDb8vmDrgcowW+xsML1Mx1pwEqbcvixB93IdxVT7dWb4p1txeza93Wdcy27oMkTa9SXq6VrlEYZrmPlAw+Nde9U7e6zM+4uv1CXsvCAgREPCo99fWl7MXSrWm4c2dGxce7hYlwqs67y5db572+6AWZ9tlz1KwWs9k58Z3fhU9MGOl6+d6ZnnwtMWCorFOpPi93MXEv65P16HGpjuByztumnI+MFS9w9+HJro28ciH0KGrtG48JF+YjrUata9xIVmhx/eX1bv99E7hGQ2nlR0yfHaUywnD/3762+IhWyNszzJnx/eDT7t03JkrzrQSo1b9NDt9r5BxIkY5czp8wvb9zmfPnCdS020Fxq5ed3hF1VxR4hbrVvfKns/hHg2Jt6Jd0mm5u+++1XLUuz1XU74cXnZ0+X1ts0XZsLrNxT/fHzxZpMfDt1HaRi4/JeSurwMfRPqWcmPg0UXFR7Q4GLZJtQIxekW7smx5zmkfF3TrmeReix0JNqzaVa3vvIbPF4yNHiJC49dr3s6IOHrF8cHfz89JH2vs8IXPpxTaEvF5m2ljSjT4dW+N2SWPvEjWJ0317iOOzgiqFW3G2+A/WlapcLNh6j7zf6s3t8vbtuU7Xby/a/a4QYdLpu0bbmLc46VbXW47KMOF8P88OjL73MlOZbvmy9YqScZopzsu3JCs4pGX3avlKDKnbIeJnQPjrh42Z2/FrB1bJSu39OTam5Me3Tn8sf3s7zO/hI16JPivsjN3vQ2VqF+LaNmP7jiVt9n5qrGuHfpaLCBBmNkZ03X8VK9j8G8XVr5q/yxy+ZDBXQ7lD+rz9+staY/s/Hb51y+Tyhe6tKR+qleRkqW/MTNSops9HobMUujqlDsNzhUIrnfq9IIZh2slvBxiW4KDHcb3zBZQZW3KyQ3T9eh8uVai0EHHCwWX69D1fdV8Wa88eJdywOSQHWPmXBn5zbh1nQ/8XaJO+gs5l72v2TDG/cGHrhe9/f7Nno+zy78tdPLg6e89e06u/UemiOXaZW92a0zo5i8j9LvW7Ocve4ddWBCu/dskJ06unFa8ZqMoVa52/lji3Z6kx/e0y3O5w/xXq8vE3prqbaK4l7am7xNj0Meg1inOjIkVtDfnlB8Vj/8cuDbib1GjdJ2eImqlZTuK9as7/OGycg1WNZ2bMVuXgMnFI3xNkD3m9G3pXzz7fc+yuz+FjDszR6yKt9MP7bTlt655Y+2c/PbYmBCFdvYN3epOxXZNA9cdbry42rIN6TNOatXp05BvVUI+rhojIGLZrqOGf37S4XHJbG//5ccCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD/sWrDH6YJ9T10jgfzwxe533z+p7q7t3d4/jTo5ILC5YZ9ePtn/w9tK3XLXGtNmiTHfskT9kXbwZuWHs/49cjm839c7PhlVKjpV5qVS5g578id10dsqJLxasTKNQIST81XJFSV1QeGXb02p9Y/O2pPOr/l0+uCfZ6Uzzcx39AqX3bnO9g/9abo87PFmhQQ/uTbaGuTrgvOU65srGjlOzW51ibU4P/OFRgQEBA28N/dDQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPz/Tau1X0OlHBvxWMnuo78OnrOwe93d2zs8fxp0Mv7NpQdqNkt1MP2yp5d3JKjb8PjQaccG7slXc9ePajeyvQqcWnpu/7rbphddOK9QpT41W6QNs/BZ9jixepR+dnfHrG2pcqQ5dbbnt9RT+/YsdL97wtxT9+eZXqBopXubprYac33n5FfNz6W5X2Nhx9xNBkxqM6rouww706arnavW8L5dTw9I9d+5AgMCAuL+u6sBAACA/zVW7s7cr0ORKUHxi03fHT3B9tT/7eEh/pMHBoQLiBsQJiDq30uazi5V59eW89K9jfEm4cvfTj8J2jJmyJN07/8YkLzcu3VNM16Lcv/d+6G9u3Qffmn+uSz/8rEAAACA/5fZUVPEWtric87B+/+MdKHixXf/7f+B/8kDA6IFhA1MEXC3V5E3SyoGTfg4bEiZ4UMnHN9bK/7YzkOLtR5y72TTAgdePR2dvv6ELFfXJPklbvLS7d9MmdCv050kA2fPaJBwdqz5CZduLpw4VJaJG/ZW77H12uuytcaFLzkneOq3DbHP9aqWuX3ff56kf9Dr3I8u+3ZsjXy3TWDfRGviDqq5cuGByTN6rdvS5PdO7aJ0TPimzrQE8RM3Trp04tOtCS79smt0v2G7U48s2Gf4poHD+2Sd/LhA9zpz8mev0Cx64TDX503MET3Hj35zcg5I3DFuoZPfn58Z1v9mjAxHf00yPEfQ+r97t1yyPjhg+JZmddIGjk+TpFPPPmNaluldckOJET9aFK6/NOWEoeVWhr4S/59Xp25PmdIzY5rToRulXJayYZIv3xOHDhhVOvHWOcU79It049ydPSGb3Xq9JUHDCem6J/6XrxEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAID/ix04EAAAAAAA8n9thKqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqirswIEAAAAAAJD/ayNUVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYb9uQuOoAjiAv9ndNJtsUjf10FVBrWBb4lekiKKgATWI2KhU8ANKq7UaaHso9VBBaBKqifQiFUEoakTwIyJKRVsrloLGg0L0VFHwqxcLIoRigtpDJclMujvZMe3WKujvB8Pb92bmP++9eTu7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/O81Fyoz5adPbpvqPf/WzwY3Tu647cCWgTf2X3r4uX09awdWHzt+987xsQNvj3R8vfvmW0Z/v3Pih4OHTiwYvH226IyrxRCiySiEnTeumxoa+3zpdFsUQshH5f4QOqIlYx1RKqHrjxDCw3P9rN35weSqR6bLgV3NNe3npELS4wqlfNKfWeXa/vLfUozXWW7VwaEjr/S8t7ene+rotr3X9588JJo+Zn+8nkJYvD59fq5O7kMb+jo7N218/OXLR39a98vSvtEXbl+z8t773mprWfvi09t3X/3S8Hf3PHjZu61NIYSWeJuWrNZKcvG4vCuE0FqVf90C47rkFMd/ZUb9orhcFJelBXKS/ctS9fTcpL/EiaZU2b7A9c5UvXtWT1Z/T1fb35lb5+SsvFxq14dx2Xmal8wnWxRyUSjMZW6OTq6RUHXfohDN3MviXD03U89V9beptv9Rqp5L1fNNteOavW680PJRVNueHJdqTx7nhbh9WfWzvo41Ge3nxWUx/qL+ltRD+sOs0rwPc+OakfRr4i/68k/IVT2D6rXP3fj4ZpTitlK0ZN45J+pI9hWuatszVC70ljP6Eb0TxflRQ/m5Rb9+/ED3xZ2VrPz1uTg/11D+tfcPPfHYFzuWV2aG3z8//5kkP99Q/o9vvnqkrzJ8Qeb8TCTzU2gof8U1Fz5VHK9UVmbljyT5xYbyl//82rGPxgcPZ/a/K5mflobyN0+0P7plZOtXmfkhyW9tKP+mXUf7ul//9tnM/EPJ/JQayt+3p/f75tWfvN+Vlf9lkt/eUP4VgyuO97SEGzLXf3cyP+WG8st3bN3wzab8YNazM+o/1V9YAOo5N/6PNRzXG31PPVNV7wvPl6PZ/3xt8XY239Wmr7P4LOYDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADw7/gzAAD//24z3eQ=") r1 = syz_open_procfs(0xffffffffffffffff, &(0x7f0000000200)='mounts\x00') io_setup(0x1, &(0x7f0000000040)=0x0) r3 = openat$autofs(0xffffffffffffff9c, &(0x7f00000002c0), 0x200000, 0x0) r4 = syz_init_net_socket$llc(0x1a, 0x2, 0x0) io_submit(r2, 0x9, &(0x7f0000001780)=[&(0x7f0000000080)={0x0, 0x0, 0x0, 0x6, 0x2, r1, &(0x7f0000000140)="ef302e7d70913b6501abea4dd021ece6afeca0818185b512406da8f7d3176bd71229fe2b2b140013f553d08095806c6c45af6e7ab834d36a328d61879023b1a1347bb2690360b57a859809db1c7e2db36b9eba0a9cfbc5fc305aea5d4bcca0fe951fb3bec9340650c84f7226cb07596bcd26a5732e72e38dd62cb60d806ad5aee3fb3930f08dbb9c8f3b5fc94b15eca15437dcd8145e382fecc627de9d546cf446103355", 0xa4, 0x8000000000000001, 0x0, 0x1}, &(0x7f00000000c0)={0x0, 0x0, 0x0, 0x6, 0x8, r1, &(0x7f0000000240)="db35058e9ca51f6ee52652485186188b0ccf36711c3fbedb04a03e820d5e2caf8a0a1d466fc844f78b6900b5415126a77a54c665534a55462df507032cc8ad6ae7bdaf54b4b7be3c93a0f0d3b54f38c97b7095b81674ecc5726d80", 0x5b, 0x7fff, 0x0, 0x3, r1}, &(0x7f0000000340)={0x0, 0x0, 0x0, 0x3, 0x0, r3, &(0x7f0000000300), 0x0, 0x9, 0x0, 0x3, r1}, &(0x7f0000000400)={0x0, 0x0, 0x0, 0x3, 0x5, r4, &(0x7f0000000380)="83264eb7ad03bdb3ffff6da7d8714104b18d3177c9c23122a0d02959bc987afda16cd75ce3d673699ce8d2b1da40b439b3eee323fe0c9820d7be09a2059d16949a8314d767f3b4870dc34e7c1a2247f4bb1ebc43f63d", 0x56, 0x8, 0x0, 0x1, r1}, &(0x7f0000000500)={0x0, 0x0, 0x0, 0x0, 0x9, 0xffffffffffffffff, &(0x7f0000000440)="a69748499204e0d9aa6cfb703913db85fade2086a71ef3a9aab5cb37683a50950f898d64e81c0b68040249d49002ddd1190043be1d37ee88b48ec20972e3ae69d80ea916c78c1bd8af093300445385bff93ec2c03e1aee24367fa87240f50928079c5a22b6dbb49175c12f60ca986174f09f8be09595de12932d0dec39b056b9c48c215da646", 0x86, 0xffffffffffffffff, 0x0, 0x3, r1}, &(0x7f0000000580)={0x0, 0x0, 0x0, 0x8, 0xf, r1, &(0x7f0000000540)="409b7a2a78aca839d904753ac62d694026e2f9de9b6f99f6d330fda6e1b3cfd3a1a2ec3313e9e82730306e0d", 0x2c, 0x6b, 0x0, 0x7, r1}, &(0x7f0000000640)={0x0, 0x0, 0x0, 0x2, 0x0, 0xffffffffffffffff, &(0x7f00000005c0)="ceaac5a52a24b48e5560e83b057e7ab321fea81e92a3a663df8e8be40c015ff7f94171ab70458f1c018e3c794e2b559225171a69dde836b4db5df6ca8d54cc4517d0", 0x42, 0xad59, 0x0, 0x1, r1}, &(0x7f0000000700)={0x0, 0x0, 0x0, 0x5, 0x8, r1, &(0x7f0000000680)="aed66e99f02516b103151ad02bef603544f60982a38500aeba44d48dd1dfa0b794ebc94ad32ec1ddfdd555200a092321df6f0826f220d99e5ce53411391ce4aa75130403f62df4d78a162e", 0x4b, 0x0, 0x0, 0x5, r1}, &(0x7f0000001740)={0x0, 0x0, 0x0, 0x6, 0x8, r0, &(0x7f0000000740)="c41d9a5d730e637aa8af77d68bc38dd641cbe153cc3f88a983092e21b065a69952aa7c59a28d058bda75f7ec253681712a9231615a5847e430b2cec3b1c3448c4d5e03eed91c13153635d50f11472ab3262d0ba50653f51b16b58567e95636775a42562f761b73b8bf9cc5d405efbcef141663af8edbdd67d76756b7f53c2cbff467697a7f5f8a43fd1d1b750b5ad4ac4608321aea1d63f0e6ef9eb2fe9d2a33cbe2d69ef36eea4205f3ebe92b321f527be5913732470a209ef33d65df88b67f2007a2fadd62c122515a141948cce45ffa5d2c5d71c94cde52ef5c19d676066050c89578b75d54a22278a39cee76d552f97e8090133468ff3a395a47b870a1eabb5ec58cad73e10666973a028799d5729b70d3a30b231a00ad3e78e6b862eb7362a2c0194fef22c0d5c3a4a94b28114ed32caff29469bb6fcb0158f0cbc1a51b68fdc22e083b0b16b7d154bbf6c5ac2cb37d8e71fbcf9e74d65fbddbe9e88a87eca1890829fe4acdd26ea3b9eae2d9b79bf84d69375f891153c8ec88ecda317b6e9c3006bdbf1dab129c0c81dbaacb811fdda26ef9fa13ab41a53cae18b1bdb33bd2ec3e1b4a155d32579b0ef88eba2bc2075c24c94900105a205dc9d262e7fab072af1e8bff8d21f1ae5131480b783c0ff01a0713e64b03b9cb874e674ef5f8e86b937e89f975ece7f5646cde2125ddceeab9ba8e69606abcf3a392fd23bacc5c7b220591c1efacd3c80a39e770058db40632f44e8b71b75b86a14326a879457ac263f47ca9800034be7895cb62d8ff776599ee0e277938ef81128f9e098bb1bccf12d66d59f39e104f2ea7340f36b7cf40325eb2554bb1858d5b72134ef3714a4ddb027f5f4a47244d35499f76bfcb52cef55547b2a7cdd7018f531e917c2c611751f0f73dea63864ab511be6d4c5c0da0fe8a5f04a34e5ee060be441f3618e022cb7b8b0c1049e117b54ef64264e4e14677f29211652b12b7bf84652e05146d1836d23f3d02bfad20f463b88e51fc1113213efa686664884866466e74ca6da3786b9a679d2a4821d54092a93bfb3b001a857d9bede95cdb85a862090855f0c0a589ac2879ac665da8ddcfc51d7636b2edb2554d9be28e9f102deac29eef269456000f560faec21170a0ea100a0874a3a720d4bdc988d2f091d84e0cd1c329c70cdd504b62c99cb0921d0005745c84303c60260bd6582dd86a96e718d6f9f21694ccdfd1935cb149bf8fe30be9c18ee21df1e7269a5ff7859c34edac8bea216d13e7454569727c917baadb7c2fdf4f591009e559b3acb664de3b80d36489b459cfce07c66a1b5b20b39b5783f14ce9956f94c74b2981e6a89ff39f3780ca51866a4ea1f1dcdf389ab670aa673fe5a00cba816d31c84e568899a8e03eea0ac098411adffe1714790094c941f139f6ea4a46e765957a496bee5d84584466ef360ded59a1c7b04a1bb47694a0f0c33317f81cca52f6298a0686ba71b031ac1726a8620c3e54dabcd33df14275f63adbff16ae5e14f6a213678e98bf07390502f0df3626a9ce33b570c754fdb66f32af911380c76cbaabcc868f54251b24bf40b8005342f1e7fb832bf5e3a37e571d63adf848891a6b424ab837eb03b68c842e3c5145116e91a69b94b6fd32ff50848a61860601f66cbea262fea30a48e507e19c1f6be7773f4c52bc0592866f8f091c58f48c2d805d111ca1e87c25aea576639637717114279570a534dee89215f64c1d1f7bc0955398aab6392a098f3be36b46b85eaa79ab1c2cd5a03dab674e8a46176097cb79e4a166735961520e602751d60d15c27272a5c42a82a3ab7a9ba94bd07c85e0ecb32ddc5dd373fbf9cef6d8a12f2eef0a90f9e938267a1e2a3f83a92939caa006a7bb3e451ba338b0eac1a77f778249c5b120ea343dcf2b68433441030b64b3c296b78f91f570b707bfc5226f379c2df0e667122a2f6c23eb389af5f3a6b3a88f8cca89233c23ce651c4744f804f957df2a19055c29d8d613c094f8d1e3711acf3719788b268e4c3ed113ad516e64574d58365a53f51ca410bd418c11d87f91f24d98792b279c799e4689fb32edc16bfe14b9c36661785f3197670546b4295897af868df64268cc941dff17ba3007c005ffc5153b32e30585bf1b32c457c144032c57d290b3dbbd7eccd73ea0e62f9e92e3fffd8626f5b8d600ac11e745a1dd0e9cf48c6dc97542e2fb65fad13bcb26d1c892657613441d6239b497e55bb19c20d2df4f71d2cf5b5c144944416a53a99e1ebc343fdae5e429e9e1abf2c55ee8de40fa8cd992c1286fcf326b4ef064057b72e1d343088910a8caf2dc1b8c01ef2419716e98e5a01c559850c19e55b3f2fd6a499dc7147f99c4a0f7465ba7620d4e813e8193f4e8df0f19c385d8070a1be802ed8940df2445bc7081a5c1d235d112f825bdeaa71b37c9cffef98d651b7179edd0c46f0eca1ad1bcaa36f47a76dcd7415f72fa51642eecb6c6a3568cc697ea3d4a1b44f475681c19a7619ec032fd2dc4a12813df3d2cea8da0b752303f39834f7f14d7233a4b4d88e830322c14affba300a1e6024ba45e4c64434958b7b504a40d9ac04bb20858d847821a4dfc61796a72499ea01dd35945a4fb4f43062a483dffb4efae7d37aae65a60a5d935cc8d40852f8ea02cf344513bb8b80888d15b8404250e7d3d3bc3181b03e8d4d050b9a84f3ea6b70383df9ea2940c4a7b0b7f1d02a9951303ca5bd84179fa68f6ba9ab8a98eb96a4c3084854876beddf028be6e6c73be621f5023445ac6903cbbccb2a0927e7fb0972b048193f1dc5e0026b7790a4fec56cb066f64c5f19f400daafd4376f40093dc30371801a23bedd25507f046bb9bd32778ee81ae9787c8a695ce03b6d541d340b43a2fc6f9cf02187f56631ff41d2f844dea2b1ab290d2c131861cc9aa3b749dd992d6831a1df49813c4b56766025f627c3cc551aaf772b14f648b3103dc2917462558ef01b3220d02603f7fae7c82a6a39374786953108809579f0f9068cb6cfc038224fa47d477c8b08d3e0b55835903f4f16222fe5ae5966e4f1071ef84bf1f372813ec3eb3faa2194c0dc651ebd565bc933588efbde69cde5e6c747b646f5fdfa51d83e34e1294d856ede8689e4f751a65303a3c1dc6cf69b9fa45057f8a8f2055afa9b7f542363f9374d68609c13ff5f75eaf7ddd4e244029e8a3348d73209ec025634752330a1547e03d08802ca1d12f5f5c4a9efa20d74572dab083b33791b106879f91e48f98bc8df6b56518fc24bcd488cc05d42b787b20099c38674d1de825a717ab433b1e57e039b8068e6e963c0d789594d06f54232761b8668d4e320268a836be099b8dafa675f75292345fcdba8dc2e51f3ac60267938db9af9131332cca9a924a0c59d6b4e7b4a216b985ecb357275b83736bb12e240da127b74f5834ac7bb50fe93a7be9d0bda18d18f87eab2d393a14740c8c96ac666fbf2eab618f84cbf5e82ed9dd135b22f99c19453905c25c191b9fd55d867b89959293c7551de942c4ee21536ddf09c242bb4ea73b59987d8846fbdf8ed21b8e8a8da0dd988b6af9f8e9ce4143d27db63758cef9df3920cc3d0ccdc3bed599a854b0b02619a61d393ac6b98e43b8303dd0d4d67beb7897c35a5d97302b3b0da64d901d7eb8adb0e6cc2c8ca483ca0d5f673ed7b1e3dac4e82556417e954be1cc9536c68797df486567ead7609bdec335e0df7ccfe19af071dd54d89f4385e8483806cc6326c78990da65769ee5f684c3120799bd4be6bc9c5bc3d1282380ef5b517ba9900907d04bbf6e4828d2173084701e637ca0022c1f2d0474756c7fc5f9d5e7b371e77f5e4f473c75b38c3a122f0d1252a324cbe29554ff40cee86e7b278ff5a09c6a344d96d4e1cb2d1369dcfee29886852a781b43275b5d7063dfce8e8262f276bb28974c772a5f48ec54240663f04a3413217b28df95c82dadb74de22597377416621d6eded2e523b0a63e37f7caca155754e23a000a2f738989bdb0c75ff52c2b94308c06919d2ba402c117678c8615dc672a8e35f06cb58d26ff9ad288dd97d74621171b2f6b885ed35461f83608f5e6f329e66087c11cd2768f47e817712ed6683981566ced952d393a4e61352a8838af938f6406ddf1beee93bd2a5f2581e2f3fe68e096e228085d39f5eac012e59e819c651c2ec36b5034d09712be5065e54939ea28c991231ce177188c0947802b7542446f8203771a1fc8ccde9e4386cfef6574df60591782d0221d3e497a8c4fc15ca81a474d7c5b38777d2599e8deb9d6f3d1531196d959339d6f1b9b5a7122e862d260eb37ebde99bb93c5929babc397ed71100e6ea64009da477e3fdc7179d8be36897ea743aa2b2fd4c98b9120334096a729215d9d52934bff6b15073085c412b8d302702bfdbf904ca4086a1fa1476123780331af870adc37f2a182bcd1f7135e23e9f2295ef87ca811a95d219b042d64ad191605d503b35f1cbe935ca76d2c94dfed9d18d03be088df7eb3e336e8965fbbf0ab61bccc4efbfc0111085ca6dc23bf21157874e929cf2cb047a9c5e6e6044ff38f5e49146ab0778e8e32ffd6ba163e0169d5a8042aaf1e586d6e48b4061caae520e96e9fe2dad4775b8f6c8c8cc137b0887c98722b7399e7d98394200d1b16627020948cbce79b891689e1e6f521d5c88702581f2d7257ce0c42f08138a90fd69fc326f0c8c8a51835bf76a52d417051dd5714bb30693c1fdb46a6c66f921755abbbac8629126c5010bb984e84be038692c07c2021ce615e8cc2591d108ae3324a5d8021c5f43cee3c7d401c6f41b84030de67d5ec02ce2915991eee65f230080ca2d09c307373dcbeb5767e3f2d6edd8ca08e92b37abf11ebbff1d7fa33257d18411b9252481465938f4b6077cb5027a53887bb662183d998e84f7dbdf8532ba9744bc84a220635a62e9ceecd468c111061d4d95b52c7e8bd659b395710832b96970fe3528be449e1a51ddc446a2387d7dfd8015d0d3af9f93d826bf56c5819d990dad1681633abcc77053085294adacdc1556424cea6eceefcd21ad01eeb67eba3e3d037b97c9e4f37b832c5a82b124dbae2eebda667e99e05afdc190da1ca68602736d96eb2b7ac2a08026f89da64d207f423034eab542fca928c1fd7d0995febf41a8f3c69bccfafabbbf070751a1e28f63cb58b86d89a00152d8d804f27e670e7411c6b41ab9b8f72dd24ef70d84cb6ce0070faff04fcf1f60c25684fcb7bde33da921f90c6427083038fcd3596a81600abdef7507e8535d6ac83efce81d72d4264f259c306966ae062dce1e14654076cc8715ccc63574133c9537b60a316e564883877105b4565d2c7cd37fe204466d2ef6b310a982c188eb33bff5bcee893ab26fd590e4b0155e45f8fb48d6d924e7904a095c67b55915eeb34d51dd93817d5bf149b5d341eeed28d310f20543c94a70e805512e90d97ecbe4f6f8d4cfcbb59c5c8911ec2780b913b9d51be294700d253aa73558c3b404a161d86ec4a856793b00b9ed8c2dd10b188adf59f579bb80b228ce60a76fec030e365ff4615dd4519bf045ba3bc9811a6426efed12d7ffa2c18ab598a1df14156e1703c441c94f83cf712dd4a0fc094407acb29efe18cf8ff54a9f47d1d899b8e938e73007ff32938c6a01ae58dfbc65146ed3c30fe603f022e66c183d99fb45845540deaeee925a39d3be5398a18cdc072f7c259ec43a5771803f789fb1a373ccdfbf3b416615ff9253880979e287878067e8c270106704f12488133a73451d3a157e2", 0x1000, 0x0, 0x0, 0x3, r1}]) read$FUSE(r1, &(0x7f0000004180)={0x2020}, 0x2020) [ 68.752326][ T4663] Bluetooth: hci0: command tx timeout [ 68.979665][ T5317] loop0: detected capacity change from 0 to 32768 [ 69.070752][ T5317] bcachefs (loop0): starting version 1.7: mi_btree_bitmap opts=metadata_checksum=none,data_checksum=none,compression=lz4,background_compression=gzip,gc_reserve_bytes=512 B,nojournal_transaction_names [ 69.070752][ T5317] allowing incompatible features above 0.0: (unknown version) [ 69.086321][ T5317] bcachefs (loop0): invalid bkey in superblock btree=extents level=0: u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 4e0410879b0c2f04 written 16 min_key POS_MIN durability: 1 ptr: 0:27:0 gen 0 [ 69.086342][ T5317] invalid key type for btree extents (btree_ptr_v2), deleting [ 69.099633][ T5317] bcachefs (loop0): recovering from clean shutdown, journal seq 13 [ 69.102473][ T5317] bcachefs (loop0): Version upgrade required: [ 69.102473][ T5317] Version upgrade from 0.19: freespace to 1.7: mi_btree_bitmap incomplete [ 69.102473][ T5317] Doing incompatible version upgrade from 0.19: freespace to 1.25: extent_flags [ 69.102473][ T5317] running recovery passes: check_allocations,check_alloc_info,check_lrus,check_btree_backpointers,check_backpointers_to_extents,check_extents_to_backpointers,check_alloc_to_lru_refs,bucket_gens_init,check_snapshot_trees,check_snapshots,check_subvols,check_subvol_children,delete_dead_snapshots,check_inodes,check_extents,check_indirect_extents,check_dirents,check_xattrs,check_root,check_unreachable_inodes,check_subvolume_structure,check_directory_structure,check_nlinks,set_fs_needs_rebalance [ 69.134796][ T5317] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree inodes level 0/0 [ 69.134814][ T5317] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 69.134824][ T5317] node offset 16/24 bset u64s 110: checksum error, type chacha20_poly1305_128: got 10bc423e39413c8ff546ee7b8bddd99e should be d1e256903dc89dd6436b0db8b45d2093, shutting down [ 69.134833][ T5317] inconsistency detected - emergency read only at journal seq 13 [ 69.158912][ T5317] bcachefs (loop0): flagging btree inodes lost data [ 69.162620][ T5317] bcachefs (loop0): running explicit recovery pass check_topology (2), currently at recovery_pass_empty (0) [ 69.167097][ T5317] bcachefs (loop0): running explicit recovery pass scan_for_btree_nodes (1), currently at recovery_pass_empty (0) [ 69.175109][ T5317] bcachefs (loop0): error reading btree root btree=inodes level=0: btree_node_read_error, fixing [ 69.183098][ T5317] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree xattrs level 0/0 [ 69.183221][ T5317] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1b881868e2a6abe1 written 16 min_key POS_MIN durability: 1 ptr: 0:31:0 gen 0 [ 69.183231][ T5317] node offset 0/16 bset u64s 65528: checksum error, type chacha20_poly1305_128: got 0cb4223930bc27f7b005af4211d2d2ab should be bfe6cae402ee7d36b6db4e56f0f38113, shutting down [ 69.201819][ T5317] bcachefs (loop0): flagging btree xattrs lost data [ 69.204818][ T5317] bcachefs (loop0): error reading btree root btree=xattrs level=0: btree_node_read_error, fixing [ 69.211582][ T5317] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree alloc level 0/0 [ 69.211595][ T5317] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1818ce08861e3527 written 40 min_key POS_MIN durability: 1 ptr: 0:26:0 gen 0 [ 69.211603][ T5317] node offset 8/40 bset u64s 375: checksum error, type chacha20_poly1305_128: got 2797dce8ab28bde8cae78ddb9f073c6c should be 61ec379a8789477e76ff1a5280fd6dbd, shutting down [ 69.228638][ T5317] bcachefs (loop0): flagging btree alloc lost data [ 69.231828][ T5317] bcachefs (loop0): error reading btree root btree=alloc level=0: btree_node_read_error, fixing [ 69.236996][ T5317] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree subvolumes level 0/0 [ 69.237010][ T5317] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d682cebdf2a7eb26 written 16 min_key POS_MIN durability: 1 ptr: 0:35:0 gen 0 [ 69.237018][ T5317] node offset 0/16 bset u64s 0: checksum error, type chacha20_poly1305_128: got c501fe3a8c1e989f3650e5ebd3ab150f should be bff45ac871db9bfa3686500c30b7d82f, shutting down [ 69.254568][ T5317] bcachefs (loop0): flagging btree subvolumes lost data [ 69.258228][ T5317] bcachefs (loop0): error reading btree root btree=subvolumes level=0: btree_node_read_error, fixing [ 69.264803][ T5317] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree snapshots level 0/0 [ 69.264821][ T5317] u64s 11 type btree_ptr_v2 U64_MAX:18446744069414584322:U32_MAX len 0 ver 0: seq d771a06d670df06c written 16 min_key POS_MIN durability: 1 ptr: 0:32:0 gen 0 [ 69.264830][ T5317] node offset 0/16 bset u64s 0: incorrect max key SPOS_MAX, btree topology error: [ 69.281221][ T5317] bcachefs (loop0): flagging btree snapshots lost data [ 69.284635][ T5317] bcachefs (loop0): error reading btree root btree=snapshots level=0: btree_node_read_error, fixing [ 69.292615][ T5317] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree backpointers level 0/0 [ 69.292628][ T5317] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 3b468546fb27822d written 24 min_key POS_MIN durability: 1 ptr: 0:36:0 gen 0 [ 69.292635][ T5317] node offset 0/24 bset u64s 0: checksum error, type chacha20_poly1305_128: got 2acad9df37735e28abe14efba46ddb5b should be 19c247df4dc9e0e94a3013de514d1230, shutting down [ 69.309685][ T5317] bcachefs (loop0): flagging btree backpointers lost data [ 69.313198][ T5317] bcachefs (loop0): error reading btree root btree=backpointers level=0: btree_node_read_error, fixing [ 69.320491][ T5317] bcachefs (loop0): scan_for_btree_nodes... [ 69.328970][ T5326] bcachefs (loop0): invalid bkey in btree_node btree=snapshots level=0: u64s 8 type snapshot 183771956703848:13238331108950540287:0 len 0 ver 0: is_subvol 1 deleted 0 parent 0 children 0 0 subvol 1 tree 0 [ 69.328991][ T5326] bad pos, deleting [ 69.343949][ T5326] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree subvolumes level 0/0 [ 69.343971][ T5326] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d682cebdf2a7eb26 written 0 min_key POS_MIN durability: 1 ptr: 0:35:0 gen 0 [ 69.343979][ T5326] node offset 0/0 bset u64s 0: invalid bkey format: field 1 too large: 18446744073709551615 + 12234449212942581760 > 18446744073709551615 [ 69.343986][ T5326] u64s 3 fields 64:0, 64:12234449212942581760, 32:0, 0:0, 0:0, 0:0, btree topology error: [ 69.369348][ T5326] bcachefs (loop0): invalid bkey in btree_node btree=inodes level=0: u64s 16 type inode_v3 0:4096:U32_MAX len 0 ver 0: (unpack error) [ 69.369364][ T5326] invalid variable length fields, deleting [ 69.376710][ T5326] bcachefs (loop0): invalid bkey in btree_node btree=inodes level=0: u64s 18 type inode_v3 3103784960:4098:U32_MAX len 0 ver 0: [ 69.376723][ T5326] mode=40755 [ 69.376727][ T5326] flags=(15300000) [ 69.376732][ T5326] journal_seq=4 [ 69.376737][ T5326] hash_seed=a019f248330e05df [ 69.376742][ T5326] hash_type=siphash [ 69.376747][ T5326] bi_size=0 [ 69.376751][ T5326] bi_sectors=0 [ 69.376756][ T5326] bi_version=0 [ 69.376760][ T5326] bi_atime=1987793307 [ 69.376765][ T5326] bi_ctime=1997793410 [ 69.376770][ T5326] bi_mtime=1997793410 [ 69.376775][ T5326] bi_otime=1987793307 [ 69.376779][ T5326] bi_uid=0 [ 69.376784][ T5326] bi_gid=0 [ 69.376788][ T5326] bi_nlink=0 [ 69.376792][ T5326] bi_generation=0 [ 69.376796][ T5326] bi_dev=0 [ 69.376801][ T5326] bi_data_checksum=0 [ 69.376806][ T5326] bi_compression=0 [ 69.376810][ T5326] bi_project=0 [ 69.376815][ T5326] bi_background_compression=0 [ 69.376819][ T5326] bi_data_replicas=0 [ 69.376824][ T5326] bi_promote_target=0 [ 69.376829][ T5326] bi_foreground_target=0 [ 69.376834][ T5326] bi_background_target=0 [ 69.376839][ T5326] bi_erasure_code=0 [ 69.376843][ T5326] bi_fields_set=0 [ 69.376847][ T5326] bi_dir=4096 [ 69.376852][ T5326] bi_dir_offset=5682031293254759865 [ 69.376866][ T5326] bi_subvol=0 [ 69.376871][ T5326] bi_parent_subvol=0 [ 69.376875][ T5326] bi_nocow=0 [ 69.376879][ T5326] bi_depth=0 [ 69.376887][ T5326] bi_inodes_32bit=0 [ 69.376892][ T5326] bi_casefold=0 [ 69.376896][ T5326] nonzero k.p.inode, deleting [ 69.453455][ T5317] bcachefs (loop0): btree node scan found 6 nodes after overwrites [ 69.456945][ T5317] done [ 69.458467][ T5317] bcachefs (loop0): check_topology... [ 69.460386][ T5317] bcachefs (loop0): btree root inodes unreadable, must recover from scan [ 69.466157][ T5317] bcachefs (loop0): bch2_get_scanned_nodes(): recovery btree=inodes level=0 POS_MIN - SPOS_MAX [ 69.472698][ T5317] bcachefs (loop0): bch2_get_scanned_nodes(): recovering u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 69.482814][ T38] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree inodes level 0/0 [ 69.482830][ T38] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0 [ 69.482838][ T38] node offset 16/24 bset u64s 110: checksum error, type chacha20_poly1305_128: got 10bc423e39413c8ff546ee7b8bddd99e should be d1e256903dc89dd6436b0db8b45d2093, shutting down [ 69.502333][ T5317] bcachefs (loop0): Topology repair: unreadable btree node at [ 69.502350][ T5317] btree=inodes level=0 u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 2a20405ac3f40602 written 24 min_key POS_MIN durability: 1 ptr: 0:38:0 gen 0, fixing [ 69.514757][ T5317] bcachefs (loop0): empty interior btree node at btree=inodes level=1 [ 69.514770][ T5317] u64s 5 type btree_ptr SPOS_MAX len 0 ver 0, fixing [ 69.521259][ T5317] bcachefs (loop0): empty btree root inodes [ 69.524222][ T5317] bcachefs (loop0): btree root xattrs unreadable, must recover from scan [ 69.528734][ T5317] bcachefs (loop0): bch2_get_scanned_nodes(): recovery btree=xattrs level=0 POS_MIN - SPOS_MAX [ 69.533019][ T5317] bcachefs (loop0): bch2_get_scanned_nodes(): recovering u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1b881868e2a6abe1 written 256 min_key POS_MIN durability: 1 ptr: 0:31:0 gen 0 [ 69.541984][ T38] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree xattrs level 0/0 [ 69.541997][ T38] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1b881868e2a6abe1 written 256 min_key POS_MIN durability: 1 ptr: 0:31:0 gen 0 [ 69.542002][ T38] node offset 0/256 bset u64s 65528: checksum error, type chacha20_poly1305_128: got d70ce88c33e31950b4a9b5eaf97c3018 should be bfe6cae402ee7d36b6db4e56f0f38113, shutting down [ 69.560656][ T5317] bcachefs (loop0): Topology repair: unreadable btree node at [ 69.560668][ T5317] btree=xattrs level=0 u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq 1b881868e2a6abe1 written 256 min_key POS_MIN durability: 1 ptr: 0:31:0 gen 0, fixing [ 69.572754][ T5317] bcachefs (loop0): empty interior btree node at btree=xattrs level=1 [ 69.572768][ T5317] u64s 5 type btree_ptr SPOS_MAX len 0 ver 0, fixing [ 69.579703][ T5317] bcachefs (loop0): empty btree root xattrs [ 69.582741][ T5317] bcachefs (loop0): btree root subvolumes unreadable, must recover from scan [ 69.586407][ T5317] bcachefs (loop0): no nodes found for btree subvolumes, continuing [ 69.590789][ T5317] bcachefs (loop0): btree root snapshots unreadable, must recover from scan [ 69.594414][ T5317] bcachefs (loop0): bch2_get_scanned_nodes(): recovery btree=snapshots level=0 POS_MIN - SPOS_MAX [ 69.599564][ T5317] bcachefs (loop0): bch2_get_scanned_nodes(): recovering u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d771a06d670df06c written 16 min_key POS_MIN durability: 1 ptr: 0:32:0 gen 0 [ 69.607991][ T38] bcachefs (loop0): bcachefs (loop0): error validating btree node on loop0 at btree snapshots level 0/0 [ 69.608003][ T38] u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d771a06d670df06c written 16 min_key POS_MIN durability: 1 ptr: 0:32:0 gen 0 [ 69.608011][ T38] node offset 8/16 bset u64s 6: checksum error, type chacha20_poly1305_128: got 0d562decf66105fbaf290a98c2917b68 should be 0176b982601c8c7be5dd888361fca1bb, shutting down [ 69.626188][ T5317] bcachefs (loop0): Topology repair: unreadable btree node at [ 69.626202][ T5317] btree=snapshots level=0 u64s 11 type btree_ptr_v2 SPOS_MAX len 0 ver 0: seq d771a06d670df06c written 16 min_key POS_MIN durability: 1 ptr: 0:32:0 gen 0, fixing [ 69.637119][ T5317] bcachefs (loop0): empty interior btree node at btree=snapshots level=1 [ 69.637133][ T5317] u64s 5 type btree_ptr SPOS_MAX len 0 ver 0, fixing [ 69.643931][ T5317] bcachefs (loop0): empty btree root snapshots [ 69.646499][ T5317] done [ 69.647631][ T5317] bcachefs (loop0): accounting_read... [ 69.649818][ T5317] ------------[ cut here ]------------ [ 69.654115][ T5317] kernel BUG at fs/bcachefs/btree_iter.c:619! [ 69.656613][ T5317] Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI [ 69.659123][ T5317] CPU: 0 UID: 0 PID: 5317 Comm: syz.0.0 Not tainted 6.15.0-rc3-syzkaller-00342-g5bc1018675ec #0 PREEMPT(full) [ 69.663694][ T5317] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 [ 69.668033][ T5317] RIP: 0010:bch2_btree_path_level_init+0x9ed/0xa20 [ 69.670710][ T5317] Code: c1 0f 8c 9a fb ff ff 4c 89 f7 e8 fe d5 06 fe e9 8d fb ff ff e8 54 e1 a4 fd 90 0f 0b e8 4c e1 a4 fd 90 0f 0b e8 44 e1 a4 fd 90 <0f> 0b e8 3c e1 a4 fd 90 0f 0b e8 34 e1 a4 fd 90 0f 0b e8 2c e1 a4 [ 69.677470][ T5317] RSP: 0018:ffffc9000d73e808 EFLAGS: 00010287 [ 69.679851][ T5317] RAX: ffffffff841add8c RBX: ffff888041518268 RCX: 0000000000100000 [ 69.682925][ T5317] RDX: ffffc9000e072000 RSI: 0000000000093f9b RDI: 0000000000093f9c [ 69.686043][ T5317] RBP: dffffc0000000000 R08: 0000000000000001 R09: 0000000000000000 [ 69.689116][ T5317] R10: dffffc0000000000 R11: fffff52001ae7cf8 R12: 3d46193e06deb4eb [ 69.692161][ T5317] R13: 0000000000000000 R14: dffffc0000000000 R15: 045e1f583088e4de [ 69.695198][ T5317] FS: 00007f92f23f56c0(0000) GS:ffff88808d6cc000(0000) knlGS:0000000000000000 [ 69.698624][ T5317] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 69.701187][ T5317] CR2: 000055fcf4e2a048 CR3: 000000004216e000 CR4: 0000000000352ef0 [ 69.704801][ T5317] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 69.708447][ T5317] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 69.711679][ T5317] Call Trace: [ 69.713044][ T5317] [ 69.714237][ T5317] bch2_btree_path_traverse_one+0xe31/0x2430 [ 69.716673][ T5317] ? __pfx_bch2_btree_path_verify_level+0x10/0x10 [ 69.719198][ T5317] ? bch2_btree_path_traverse_one+0x9e5/0x2430 [ 69.721602][ T5317] ? bch2_accounting_read+0xd49/0x5590 [ 69.723821][ T5317] ? __pfx_bch2_btree_path_traverse_one+0x10/0x10 [ 69.727199][ T5317] ? bch2_trans_update_max_paths+0x230/0x340 [ 69.730164][ T5317] ? __mutex_unlock_slowpath+0x1cd/0x700 [ 69.732664][ T5317] ? look_up_lock_class+0x74/0x170 [ 69.734794][ T5317] ? bch2_btree_path_verify_locks+0x276/0xba0 [ 69.737378][ T5317] ? bch2_btree_path_verify+0x205/0x310 [ 69.739588][ T5317] bch2_btree_iter_peek_max+0x988/0x5260 [ 69.741801][ T5317] ? bch2_accounting_read+0xd49/0x5590 [ 69.743985][ T5317] ? bch2_accounting_read+0xd09/0x5590 [ 69.746103][ T5317] ? __pfx_bch2_btree_iter_peek_max+0x10/0x10 [ 69.748500][ T5317] ? bch2_trans_begin+0x18e6/0x1f10 [ 69.750561][ T5317] ? __pfx_bch2_trans_begin+0x10/0x10 [ 69.752656][ T5317] ? __pfx_bch2_path_get+0x10/0x10 [ 69.754704][ T5317] bch2_accounting_read+0xd49/0x5590 [ 69.756862][ T5317] ? __pfx__prb_read_valid+0x10/0x10 [ 69.759018][ T5317] ? bch2_accounting_read+0x419/0x5590 [ 69.761196][ T5317] ? __console_unlock+0x14c/0x1a0 [ 69.763222][ T5317] ? __pfx_bch2_accounting_read+0x10/0x10 [ 69.765470][ T5317] ? prb_read_valid+0x3c/0x60 [ 69.767363][ T5317] ? console_unlock+0x21b/0x270 [ 69.769353][ T5317] ? __pfx_console_unlock+0x10/0x10 [ 69.771327][ T5317] ? irq_work_queue+0xc3/0x140 [ 69.773279][ T5317] ? vprintk_emit+0x63e/0x7a0 [ 69.775166][ T5317] ? bch2_accounting_read+0x419/0x5590 [ 69.777418][ T5317] ? __lock_acquire+0xaac/0xd20 [ 69.779309][ T5317] ? __bch2_print+0x176/0x220 [ 69.781036][ T5317] ? __pfx___bch2_print+0x10/0x10 [ 69.782882][ T5317] bch2_run_recovery_pass+0xdf/0x1d0 [ 69.784971][ T5317] bch2_run_recovery_passes+0x2a0/0xdb0 [ 69.787159][ T5317] bch2_fs_recovery+0x2399/0x37b0 [ 69.789197][ T5317] ? __pfx_bch2_fs_recovery+0x10/0x10 [ 69.791339][ T5317] ? __lock_acquire+0xaac/0xd20 [ 69.793312][ T5317] ? __lock_acquire+0xaac/0xd20 [ 69.795268][ T5317] ? percpu_ref_put+0x1e/0x230 [ 69.797263][ T5317] ? bch2_get_next_online_dev+0x2d/0x4d0 [ 69.799531][ T5317] ? bch2_fs_start+0x65b/0xae0 [ 69.801451][ T5317] ? up_write+0x1c4/0x420 [ 69.803178][ T5317] bch2_fs_start+0x70b/0xae0 [ 69.805084][ T5317] ? __pfx_bch2_fs_start+0x10/0x10 [ 69.807192][ T5317] ? percpu_ref_put+0x1e/0x230 [ 69.809116][ T5317] ? percpu_ref_put+0x1e/0x230 [ 69.811517][ T5317] ? percpu_ref_put+0x188/0x230 [ 69.814072][ T5317] bch2_fs_get_tree+0xd99/0x1340 [ 69.816712][ T5317] ? __pfx_bch2_fs_get_tree+0x10/0x10 [ 69.818887][ T5317] ? aa_get_newest_label+0xf7/0x5d0 [ 69.821634][ T5317] ? vfs_parse_monolithic_sep+0x2e3/0x310 [ 69.824149][ T5317] ? apparmor_capable+0x137/0x1b0 [ 69.826151][ T5317] vfs_get_tree+0x8f/0x2b0 [ 69.827819][ T5317] do_new_mount+0x24a/0xa40 [ 69.829684][ T5317] __se_sys_mount+0x317/0x410 [ 69.831418][ T5317] ? __pfx___se_sys_mount+0x10/0x10 [ 69.833328][ T5317] ? do_syscall_64+0xba/0x210 [ 69.835309][ T5317] ? __x64_sys_mount+0x20/0xc0 [ 69.837277][ T5317] do_syscall_64+0xf6/0x210 [ 69.838774][ T5317] ? clear_bhb_loop+0x45/0xa0 [ 69.840535][ T5317] entry_SYSCALL_64_after_hwframe+0x77/0x7f [ 69.842777][ T5317] RIP: 0033:0x7f92f5f9010a [ 69.844575][ T5317] Code: d8 64 89 02 48 c7 c0 ff ff ff ff eb a6 e8 de 1a 00 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 [ 69.851723][ T5317] RSP: 002b:00007f92f23f4e68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [ 69.854946][ T5317] RAX: ffffffffffffffda RBX: 00007f92f23f4ef0 RCX: 00007f92f5f9010a [ 69.858251][ T5317] RDX: 0000200000000000 RSI: 0000200000000100 RDI: 00007f92f23f4eb0 [ 69.861075][ T5317] RBP: 0000200000000000 R08: 00007f92f23f4ef0 R09: 0000000002a18414 [ 69.863937][ T5317] R10: 0000000002a18414 R11: 0000000000000246 R12: 0000200000000100 [ 69.867063][ T5317] R13: 00007f92f23f4eb0 R14: 000000000000f611 R15: 0000200000000240 [ 69.870198][ T5317] [ 69.871414][ T5317] Modules linked in: [ 69.874239][ T5317] ---[ end trace 0000000000000000 ]--- [ 69.892202][ T5317] RIP: 0010:bch2_btree_path_level_init+0x9ed/0xa20 [ 69.894756][ T5317] Code: c1 0f 8c 9a fb ff ff 4c 89 f7 e8 fe d5 06 fe e9 8d fb ff ff e8 54 e1 a4 fd 90 0f 0b e8 4c e1 a4 fd 90 0f 0b e8 44 e1 a4 fd 90 <0f> 0b e8 3c e1 a4 fd 90 0f 0b e8 34 e1 a4 fd 90 0f 0b e8 2c e1 a4 [ 69.903023][ T5317] RSP: 0018:ffffc9000d73e808 EFLAGS: 00010287 [ 69.905221][ T5317] RAX: ffffffff841add8c RBX: ffff888041518268 RCX: 0000000000100000 [ 69.908861][ T5317] RDX: ffffc9000e072000 RSI: 0000000000093f9b RDI: 0000000000093f9c [ 69.912045][ T5317] RBP: dffffc0000000000 R08: 0000000000000001 R09: 0000000000000000 [ 69.915254][ T5317] R10: dffffc0000000000 R11: fffff52001ae7cf8 R12: 3d46193e06deb4eb [ 69.918647][ T5317] R13: 0000000000000000 R14: dffffc0000000000 R15: 045e1f583088e4de [ 69.921769][ T5317] FS: 00007f92f23f56c0(0000) GS:ffff88808d6cc000(0000) knlGS:0000000000000000 [ 69.925126][ T5317] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 69.928271][ T5317] CR2: 000055fcf4e2a048 CR3: 000000004216e000 CR4: 0000000000352ef0 [ 69.931444][ T5317] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 69.934666][ T5317] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 69.938517][ T5317] Kernel panic - not syncing: Fatal exception [ 69.941120][ T5317] Kernel Offset: disabled [ 69.942889][ T5317] Rebooting in 86400 seconds..