// https://syzkaller.appspot.com/bug?id=502a3cea160c504b2c082d8e798202ef5ac076fd // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long long procid; static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } #define MAX_FDS 30 #define USB_MAX_IFACE_NUM 4 #define USB_MAX_EP_NUM 32 #define USB_MAX_FDS 6 struct usb_endpoint_index { struct usb_endpoint_descriptor desc; int handle; }; struct usb_iface_index { struct usb_interface_descriptor* iface; uint8_t bInterfaceNumber; uint8_t bAlternateSetting; uint8_t bInterfaceClass; struct usb_endpoint_index eps[USB_MAX_EP_NUM]; int eps_num; }; struct usb_device_index { struct usb_device_descriptor* dev; struct usb_config_descriptor* config; uint8_t bDeviceClass; uint8_t bMaxPower; int config_length; struct usb_iface_index ifaces[USB_MAX_IFACE_NUM]; int ifaces_num; int iface_cur; }; struct usb_info { int fd; struct usb_device_index index; }; static struct usb_info usb_devices[USB_MAX_FDS]; static int usb_devices_num; static bool parse_usb_descriptor(const char* buffer, size_t length, struct usb_device_index* index) { if (length < sizeof(*index->dev) + sizeof(*index->config)) return false; memset(index, 0, sizeof(*index)); index->dev = (struct usb_device_descriptor*)buffer; index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev)); index->bDeviceClass = index->dev->bDeviceClass; index->bMaxPower = index->config->bMaxPower; index->config_length = length - sizeof(*index->dev); index->iface_cur = -1; size_t offset = 0; while (true) { if (offset + 1 >= length) break; uint8_t desc_length = buffer[offset]; uint8_t desc_type = buffer[offset + 1]; if (desc_length <= 2) break; if (offset + desc_length > length) break; if (desc_type == USB_DT_INTERFACE && index->ifaces_num < USB_MAX_IFACE_NUM) { struct usb_interface_descriptor* iface = (struct usb_interface_descriptor*)(buffer + offset); index->ifaces[index->ifaces_num].iface = iface; index->ifaces[index->ifaces_num].bInterfaceNumber = iface->bInterfaceNumber; index->ifaces[index->ifaces_num].bAlternateSetting = iface->bAlternateSetting; index->ifaces[index->ifaces_num].bInterfaceClass = iface->bInterfaceClass; index->ifaces_num++; } if (desc_type == USB_DT_ENDPOINT && index->ifaces_num > 0) { struct usb_iface_index* iface = &index->ifaces[index->ifaces_num - 1]; if (iface->eps_num < USB_MAX_EP_NUM) { memcpy(&iface->eps[iface->eps_num].desc, buffer + offset, sizeof(iface->eps[iface->eps_num].desc)); iface->eps_num++; } } offset += desc_length; } return true; } static struct usb_device_index* add_usb_index(int fd, const char* dev, size_t dev_len) { int i = __atomic_fetch_add(&usb_devices_num, 1, __ATOMIC_RELAXED); if (i >= USB_MAX_FDS) return NULL; if (!parse_usb_descriptor(dev, dev_len, &usb_devices[i].index)) return NULL; __atomic_store_n(&usb_devices[i].fd, fd, __ATOMIC_RELEASE); return &usb_devices[i].index; } static struct usb_device_index* lookup_usb_index(int fd) { for (int i = 0; i < USB_MAX_FDS; i++) { if (__atomic_load_n(&usb_devices[i].fd, __ATOMIC_ACQUIRE) == fd) { return &usb_devices[i].index; } } return NULL; } struct vusb_connect_string_descriptor { uint32_t len; char* str; } __attribute__((packed)); struct vusb_connect_descriptors { uint32_t qual_len; char* qual; uint32_t bos_len; char* bos; uint32_t strs_len; struct vusb_connect_string_descriptor strs[0]; } __attribute__((packed)); static const char default_string[] = {8, USB_DT_STRING, 's', 0, 'y', 0, 'z', 0}; static const char default_lang_id[] = {4, USB_DT_STRING, 0x09, 0x04}; static bool lookup_connect_response_in(int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, char** response_data, uint32_t* response_length) { struct usb_device_index* index = lookup_usb_index(fd); uint8_t str_idx; if (!index) return false; switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: switch (ctrl->wValue >> 8) { case USB_DT_DEVICE: *response_data = (char*)index->dev; *response_length = sizeof(*index->dev); return true; case USB_DT_CONFIG: *response_data = (char*)index->config; *response_length = index->config_length; return true; case USB_DT_STRING: str_idx = (uint8_t)ctrl->wValue; if (descs && str_idx < descs->strs_len) { *response_data = descs->strs[str_idx].str; *response_length = descs->strs[str_idx].len; return true; } if (str_idx == 0) { *response_data = (char*)&default_lang_id[0]; *response_length = default_lang_id[0]; return true; } *response_data = (char*)&default_string[0]; *response_length = default_string[0]; return true; case USB_DT_BOS: *response_data = descs->bos; *response_length = descs->bos_len; return true; case USB_DT_DEVICE_QUALIFIER: if (!descs->qual) { struct usb_qualifier_descriptor* qual = (struct usb_qualifier_descriptor*)response_data; qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; qual->bcdUSB = index->dev->bcdUSB; qual->bDeviceClass = index->dev->bDeviceClass; qual->bDeviceSubClass = index->dev->bDeviceSubClass; qual->bDeviceProtocol = index->dev->bDeviceProtocol; qual->bMaxPacketSize0 = index->dev->bMaxPacketSize0; qual->bNumConfigurations = index->dev->bNumConfigurations; qual->bRESERVED = 0; *response_length = sizeof(*qual); return true; } *response_data = descs->qual; *response_length = descs->qual_len; return true; default: break; } break; default: break; } break; default: break; } return false; } typedef bool (*lookup_connect_out_response_t)( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done); static bool lookup_connect_response_out_generic( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done) { switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_SET_CONFIGURATION: *done = true; return true; default: break; } break; } return false; } struct vusb_descriptor { uint8_t req_type; uint8_t desc_type; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_descriptors { uint32_t len; struct vusb_descriptor* generic; struct vusb_descriptor* descs[0]; } __attribute__((packed)); struct vusb_response { uint8_t type; uint8_t req; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_responses { uint32_t len; struct vusb_response* generic; struct vusb_response* resps[0]; } __attribute__((packed)); static bool lookup_control_response(const struct vusb_descriptors* descs, const struct vusb_responses* resps, struct usb_ctrlrequest* ctrl, char** response_data, uint32_t* response_length) { int descs_num = 0; int resps_num = 0; if (descs) descs_num = (descs->len - offsetof(struct vusb_descriptors, descs)) / sizeof(descs->descs[0]); if (resps) resps_num = (resps->len - offsetof(struct vusb_responses, resps)) / sizeof(resps->resps[0]); uint8_t req = ctrl->bRequest; uint8_t req_type = ctrl->bRequestType & USB_TYPE_MASK; uint8_t desc_type = ctrl->wValue >> 8; if (req == USB_REQ_GET_DESCRIPTOR) { int i; for (i = 0; i < descs_num; i++) { struct vusb_descriptor* desc = descs->descs[i]; if (!desc) continue; if (desc->req_type == req_type && desc->desc_type == desc_type) { *response_length = desc->len; if (*response_length != 0) *response_data = &desc->data[0]; else *response_data = NULL; return true; } } if (descs && descs->generic) { *response_data = &descs->generic->data[0]; *response_length = descs->generic->len; return true; } } else { int i; for (i = 0; i < resps_num; i++) { struct vusb_response* resp = resps->resps[i]; if (!resp) continue; if (resp->type == req_type && resp->req == req) { *response_length = resp->len; if (*response_length != 0) *response_data = &resp->data[0]; else *response_data = NULL; return true; } } if (resps && resps->generic) { *response_data = &resps->generic->data[0]; *response_length = resps->generic->len; return true; } } return false; } #define UDC_NAME_LENGTH_MAX 128 struct usb_raw_init { __u8 driver_name[UDC_NAME_LENGTH_MAX]; __u8 device_name[UDC_NAME_LENGTH_MAX]; __u8 speed; }; enum usb_raw_event_type { USB_RAW_EVENT_INVALID = 0, USB_RAW_EVENT_CONNECT = 1, USB_RAW_EVENT_CONTROL = 2, }; struct usb_raw_event { __u32 type; __u32 length; __u8 data[0]; }; struct usb_raw_ep_io { __u16 ep; __u16 flags; __u32 length; __u8 data[0]; }; #define USB_RAW_EPS_NUM_MAX 30 #define USB_RAW_EP_NAME_MAX 16 #define USB_RAW_EP_ADDR_ANY 0xff struct usb_raw_ep_caps { __u32 type_control : 1; __u32 type_iso : 1; __u32 type_bulk : 1; __u32 type_int : 1; __u32 dir_in : 1; __u32 dir_out : 1; }; struct usb_raw_ep_limits { __u16 maxpacket_limit; __u16 max_streams; __u32 reserved; }; struct usb_raw_ep_info { __u8 name[USB_RAW_EP_NAME_MAX]; __u32 addr; struct usb_raw_ep_caps caps; struct usb_raw_ep_limits limits; }; struct usb_raw_eps_info { struct usb_raw_ep_info eps[USB_RAW_EPS_NUM_MAX]; }; #define USB_RAW_IOCTL_INIT _IOW('U', 0, struct usb_raw_init) #define USB_RAW_IOCTL_RUN _IO('U', 1) #define USB_RAW_IOCTL_EVENT_FETCH _IOR('U', 2, struct usb_raw_event) #define USB_RAW_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP0_READ _IOWR('U', 4, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_ENABLE _IOW('U', 5, struct usb_endpoint_descriptor) #define USB_RAW_IOCTL_EP_DISABLE _IOW('U', 6, __u32) #define USB_RAW_IOCTL_EP_WRITE _IOW('U', 7, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_READ _IOWR('U', 8, struct usb_raw_ep_io) #define USB_RAW_IOCTL_CONFIGURE _IO('U', 9) #define USB_RAW_IOCTL_VBUS_DRAW _IOW('U', 10, __u32) #define USB_RAW_IOCTL_EPS_INFO _IOR('U', 11, struct usb_raw_eps_info) #define USB_RAW_IOCTL_EP0_STALL _IO('U', 12) #define USB_RAW_IOCTL_EP_SET_HALT _IOW('U', 13, __u32) #define USB_RAW_IOCTL_EP_CLEAR_HALT _IOW('U', 14, __u32) #define USB_RAW_IOCTL_EP_SET_WEDGE _IOW('U', 15, __u32) static int usb_raw_open() { return open("/dev/raw-gadget", O_RDWR); } static int usb_raw_init(int fd, uint32_t speed, const char* driver, const char* device) { struct usb_raw_init arg; strncpy((char*)&arg.driver_name[0], driver, sizeof(arg.driver_name)); strncpy((char*)&arg.device_name[0], device, sizeof(arg.device_name)); arg.speed = speed; return ioctl(fd, USB_RAW_IOCTL_INIT, &arg); } static int usb_raw_run(int fd) { return ioctl(fd, USB_RAW_IOCTL_RUN, 0); } static int usb_raw_event_fetch(int fd, struct usb_raw_event* event) { return ioctl(fd, USB_RAW_IOCTL_EVENT_FETCH, event); } static int usb_raw_ep0_write(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_WRITE, io); } static int usb_raw_ep0_read(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_READ, io); } static int usb_raw_ep_write(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP_WRITE, io); } static int usb_raw_ep_enable(int fd, struct usb_endpoint_descriptor* desc) { return ioctl(fd, USB_RAW_IOCTL_EP_ENABLE, desc); } static int usb_raw_ep_disable(int fd, int ep) { return ioctl(fd, USB_RAW_IOCTL_EP_DISABLE, ep); } static int usb_raw_configure(int fd) { return ioctl(fd, USB_RAW_IOCTL_CONFIGURE, 0); } static int usb_raw_vbus_draw(int fd, uint32_t power) { return ioctl(fd, USB_RAW_IOCTL_VBUS_DRAW, power); } static int usb_raw_ep0_stall(int fd) { return ioctl(fd, USB_RAW_IOCTL_EP0_STALL, 0); } static int lookup_interface(int fd, uint8_t bInterfaceNumber, uint8_t bAlternateSetting) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; for (int i = 0; i < index->ifaces_num; i++) { if (index->ifaces[i].bInterfaceNumber == bInterfaceNumber && index->ifaces[i].bAlternateSetting == bAlternateSetting) return i; } return -1; } static int lookup_endpoint(int fd, uint8_t bEndpointAddress) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; if (index->iface_cur < 0) return -1; for (int ep = 0; index->ifaces[index->iface_cur].eps_num; ep++) if (index->ifaces[index->iface_cur].eps[ep].desc.bEndpointAddress == bEndpointAddress) return index->ifaces[index->iface_cur].eps[ep].handle; return -1; } static void set_interface(int fd, int n) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return; if (index->iface_cur >= 0 && index->iface_cur < index->ifaces_num) { for (int ep = 0; ep < index->ifaces[index->iface_cur].eps_num; ep++) { int rv = usb_raw_ep_disable( fd, index->ifaces[index->iface_cur].eps[ep].handle); if (rv < 0) { } else { } } } if (n >= 0 && n < index->ifaces_num) { for (int ep = 0; ep < index->ifaces[n].eps_num; ep++) { int rv = usb_raw_ep_enable(fd, &index->ifaces[n].eps[ep].desc); if (rv < 0) { } else { index->ifaces[n].eps[ep].handle = rv; } } index->iface_cur = n; } } static int configure_device(int fd) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; int rv = usb_raw_vbus_draw(fd, index->bMaxPower); if (rv < 0) { return rv; } rv = usb_raw_configure(fd); if (rv < 0) { return rv; } set_interface(fd, 0); return 0; } #define USB_MAX_PACKET_SIZE 4096 struct usb_raw_control_event { struct usb_raw_event inner; struct usb_ctrlrequest ctrl; char data[USB_MAX_PACKET_SIZE]; }; struct usb_raw_ep_io_data { struct usb_raw_ep_io inner; char data[USB_MAX_PACKET_SIZE]; }; static volatile long syz_usb_connect_impl(uint64_t speed, uint64_t dev_len, const char* dev, const struct vusb_connect_descriptors* descs, lookup_connect_out_response_t lookup_connect_response_out) { if (!dev) { return -1; } int fd = usb_raw_open(); if (fd < 0) { return fd; } if (fd >= MAX_FDS) { close(fd); return -1; } struct usb_device_index* index = add_usb_index(fd, dev, dev_len); if (!index) { return -1; } char device[32]; sprintf(&device[0], "dummy_udc.%llu", procid); int rv = usb_raw_init(fd, speed, "dummy_udc", &device[0]); if (rv < 0) { return rv; } rv = usb_raw_run(fd); if (rv < 0) { return rv; } bool done = false; while (!done) { struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) continue; char* response_data = NULL; uint32_t response_length = 0; if (event.ctrl.bRequestType & USB_DIR_IN) { if (!lookup_connect_response_in(fd, descs, &event.ctrl, &response_data, &response_length)) { usb_raw_ep0_stall(fd); continue; } } else { if (!lookup_connect_response_out(fd, descs, &event.ctrl, &done)) { usb_raw_ep0_stall(fd); continue; } response_data = NULL; response_length = event.ctrl.wLength; } if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD && event.ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { rv = configure_device(fd); if (rv < 0) { return rv; } } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if (event.ctrl.bRequestType & USB_DIR_IN) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } } sleep_ms(200); return fd; } static volatile long syz_usb_connect(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { uint64_t speed = a0; uint64_t dev_len = a1; const char* dev = (const char*)a2; const struct vusb_connect_descriptors* descs = (const struct vusb_connect_descriptors*)a3; return syz_usb_connect_impl(speed, dev_len, dev, descs, &lookup_connect_response_out_generic); } static volatile long syz_usb_control_io(volatile long a0, volatile long a1, volatile long a2) { int fd = a0; const struct vusb_descriptors* descs = (const struct vusb_descriptors*)a1; const struct vusb_responses* resps = (const struct vusb_responses*)a2; struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = USB_MAX_PACKET_SIZE; int rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) { return -1; } char* response_data = NULL; uint32_t response_length = 0; if ((event.ctrl.bRequestType & USB_DIR_IN) && event.ctrl.wLength) { if (!lookup_control_response(descs, resps, &event.ctrl, &response_data, &response_length)) { usb_raw_ep0_stall(fd); return -1; } } else { if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD || event.ctrl.bRequest == USB_REQ_SET_INTERFACE) { int iface_num = event.ctrl.wIndex; int alt_set = event.ctrl.wValue; int iface_index = lookup_interface(fd, iface_num, alt_set); if (iface_index < 0) { } else { set_interface(fd, iface_index); } } response_length = event.ctrl.wLength; } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; if ((event.ctrl.bRequestType & USB_DIR_IN) && !event.ctrl.wLength) { response_length = USB_MAX_PACKET_SIZE; } response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if ((event.ctrl.bRequestType & USB_DIR_IN) && event.ctrl.wLength) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } sleep_ms(200); return 0; } static volatile long syz_usb_ep_write(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { int fd = a0; uint8_t ep = a1; uint32_t len = a2; char* data = (char*)a3; int ep_handle = lookup_endpoint(fd, ep); if (ep_handle < 0) { return -1; } struct usb_raw_ep_io_data io_data; io_data.inner.ep = ep_handle; io_data.inner.flags = 0; if (len > sizeof(io_data.data)) len = sizeof(io_data.data); io_data.inner.length = len; memcpy(&io_data.data[0], data, len); int rv = usb_raw_ep_write(fd, (struct usb_raw_ep_io*)&io_data); if (rv < 0) { return rv; } sleep_ms(200); return 0; } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; int collide = 0; again: for (call = 0; call < 4; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); if (collide && (call % 2) == 0) break; event_timedwait(&th->done, 50 + (call == 0 ? 3000 : 0) + (call == 1 ? 300 : 0) + (call == 2 ? 300 : 0) + (call == 3 ? 300 : 0)); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); if (!collide) { collide = 1; goto again; } } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter = 0; for (;; iter++) { int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5000) { continue; } kill_and_wait(pid, &status); break; } } } uint64_t r[1] = {0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: memcpy((void*)0x200000c0, "\x12\x01\x00\x00\x00\x00\x00\x40\x26\x09\x33\x33" "\x40\x00\x00\x00\x00\x01\x09\x02\x24\x00\x01\x00" "\x00\x00\x00\x09\x04\x00\x00\x01\x03\x01\x00\x00" "\x09\x21\x00\x00\x00\x01\x22\x01\x00\x09\x05\x81" "\x03\x08", 50); res = -1; res = syz_usb_connect(0, 0x36, 0x200000c0, 0); if (res != -1) r[0] = res; break; case 1: syz_usb_control_io(r[0], 0, 0); break; case 2: *(uint32_t*)0x20000200 = 0x24; *(uint64_t*)0x20000204 = 0; *(uint64_t*)0x2000020c = 0; *(uint64_t*)0x20000214 = 0x20000080; *(uint8_t*)0x20000080 = 0; *(uint8_t*)0x20000081 = 0x22; *(uint32_t*)0x20000082 = 0x1c; STORE_BY_BITMASK(uint8_t, , 0x20000086, 3, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x20000086, 0, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x20000086, 0xc, 4, 4); memcpy((void*)0x20000087, "\xa4\x55\x2b\x52", 4); STORE_BY_BITMASK(uint8_t, , 0x2000008b, 3, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x2000008b, 2, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x2000008b, 0xa, 4, 4); memcpy((void*)0x2000008c, "\xa6\x5a\x2d\x17", 4); STORE_BY_BITMASK(uint8_t, , 0x20000090, 0, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x20000090, 2, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x20000090, 4, 4, 4); STORE_BY_BITMASK(uint8_t, , 0x20000091, 0, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x20000091, 1, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x20000091, 7, 4, 4); STORE_BY_BITMASK(uint8_t, , 0x20000092, 3, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x20000092, 1, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x20000092, 8, 4, 4); memcpy((void*)0x20000093, "`;!b", 4); STORE_BY_BITMASK(uint8_t, , 0x20000097, 3, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x20000097, 0, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x20000097, 0xa, 4, 4); memcpy((void*)0x20000098, "\xec\xb9\x2e\x53", 4); STORE_BY_BITMASK(uint8_t, , 0x2000009c, 0, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x2000009c, 0, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x2000009c, 8, 4, 4); STORE_BY_BITMASK(uint8_t, , 0x2000009d, 3, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x2000009d, 0, 2, 2); STORE_BY_BITMASK(uint8_t, , 0x2000009d, 0xc, 4, 4); memcpy((void*)0x2000009e, "\xc2\xe3\xf6\x9e", 4); *(uint64_t*)0x2000021c = 0; *(uint32_t*)0x200004c0 = 0x2c; *(uint64_t*)0x200004c4 = 0x200003c0; *(uint8_t*)0x200003c0 = 0x40; *(uint8_t*)0x200003c1 = 0xc; *(uint32_t*)0x200003c2 = 0x7b; memcpy((void*)0x200003c6, "\xb2\x05\xab\x67\xb1\x92\x80\x75\x28\xb8\xd6\xb8\x43\x88\x4f\xea" "\xcb\x72\x4f\x05\x89\x0d\x95\x54\xe8\xb1\x94\x61\x46\x46\x9c\x28" "\xd0\x3d\x1d\x51\x3c\xbb\xe1\x26\x42\x05\x67\x97\x0c\x70\x6c\xe9" "\x4d\x35\x7f\x92\x90\xc4\xd1\x60\xac\x50\x08\x9b\xa7\xc6\x1d\x2e" "\xe2\x5f\x33\xdc\x7c\x05\x0e\x2f\xf0\x40\xbf\x8a\x05\x98\x4d\xa5" "\x19\xfb\xda\x6e\x82\x68\x3e\xb2\x28\xc5\x83\x6a\x95\xb2\x50\xd2" "\x32\x7c\xcb\x9f\x09\x26\xc4\xc4\x20\xe3\x10\x5e\xc5\x3a\xfb\x65" "\xbd\x6d\x62\x17\x06\x26\x8d\x77\x06\xca\xf8", 123); *(uint64_t*)0x200004cc = 0; *(uint64_t*)0x200004d4 = 0; *(uint64_t*)0x200004dc = 0; *(uint64_t*)0x200004e4 = 0; syz_usb_control_io(r[0], 0x20000200, 0x200004c0); break; case 3: memcpy((void*)0x20000300, "\x89\x3c\x8a\xa1\xee\xea\x37", 7); syz_usb_ep_write(r[0], 0, 0xfffffffffffffcf5, 0x20000300); break; } } int main(void) { syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); loop(); return 0; }