// https://syzkaller.appspot.com/bug?id=a1d68f25c702940d846a5a7f22fc756980fdaffd // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __NR_mmap #define __NR_mmap 222 #endif #ifndef __NR_pipe2 #define __NR_pipe2 59 #endif #ifndef __NR_splice #define __NR_splice 76 #endif #ifndef __NR_write #define __NR_write 64 #endif static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static long syz_open_procfs(volatile long a0, volatile long a1) { char buf[128]; memset(buf, 0, sizeof(buf)); if (a0 == 0) { snprintf(buf, sizeof(buf), "/proc/self/%s", (char*)a1); } else if (a0 == -1) { snprintf(buf, sizeof(buf), "/proc/thread-self/%s", (char*)a1); } else { snprintf(buf, sizeof(buf), "/proc/self/task/%d/%s", (int)a0, (char*)a1); } int fd = open(buf, O_RDWR); if (fd == -1) fd = open(buf, O_RDONLY); return fd; } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void loop(void) { int i, call, thread; for (call = 0; call < 5; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 50); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); } uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: res = syscall(__NR_pipe2, 0x200001c0ul, 0ul); if (res != -1) r[0] = *(uint32_t*)0x200001c4; break; case 1: res = syscall(__NR_pipe2, 0x20000000ul, 0x880ul); if (res != -1) r[1] = *(uint32_t*)0x20000004; break; case 2: memcpy((void*)0x20000100, "fd/4\000", 5); res = -1; res = syz_open_procfs(-1, 0x20000100); if (res != -1) r[2] = res; break; case 3: syscall(__NR_splice, r[2], 0ul, r[1], 0ul, 0x100ul, 0ul); break; case 4: *(uint32_t*)0x20000040 = 0x5d; *(uint8_t*)0x20000044 = 0x7d; *(uint16_t*)0x20000045 = 1; *(uint16_t*)0x20000047 = 0; *(uint16_t*)0x20000049 = 0x43; *(uint16_t*)0x2000004b = 0xfe00; *(uint32_t*)0x2000004d = 0; *(uint8_t*)0x20000051 = 8; *(uint32_t*)0x20000052 = 4; *(uint64_t*)0x20000056 = 2; *(uint32_t*)0x2000005e = 0x23893793; *(uint32_t*)0x20000062 = 9; *(uint32_t*)0x20000066 = 8; *(uint64_t*)0x2000006a = 0x8000; *(uint16_t*)0x20000072 = 3; memcpy((void*)0x20000074, "*{\312", 3); *(uint16_t*)0x20000077 = 5; memcpy((void*)0x20000079, "fd/4\000", 5); *(uint16_t*)0x2000007e = 5; memcpy((void*)0x20000080, "fd/4\000", 5); *(uint16_t*)0x20000085 = 3; memcpy((void*)0x20000087, "/\'.", 3); *(uint16_t*)0x2000008a = 5; memcpy((void*)0x2000008c, "fd/4\000", 5); *(uint32_t*)0x20000091 = -1; *(uint32_t*)0x20000095 = 0; *(uint32_t*)0x20000099 = 0; syscall(__NR_write, r[0], 0x20000040ul, 0x5dul); break; } } int main(void) { syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); loop(); return 0; }