// https://syzkaller.appspot.com/bug?id=253324b496b749185232dff7c28a7ffb42c377aa // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } #include #include #include #include #include const int kFailStatus = 67; const int kRetryStatus = 69; static void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } #define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1) #define BITMASK_LEN_OFF(type, bf_off, bf_len) \ (type)(BITMASK_LEN(type, (bf_len)) << (bf_off)) #define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \ if ((bf_off) == 0 && (bf_len) == 0) { \ *(type*)(addr) = (type)(val); \ } else { \ type new_val = *(type*)(addr); \ new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \ new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \ *(type*)(addr) = new_val; \ } struct csum_inet { uint32_t acc; }; static void csum_inet_init(struct csum_inet* csum) { csum->acc = 0; } static void csum_inet_update(struct csum_inet* csum, const uint8_t* data, size_t length) { if (length == 0) return; size_t i; for (i = 0; i < length - 1; i += 2) csum->acc += *(uint16_t*)&data[i]; if (length & 1) csum->acc += (uint16_t)data[length - 1]; while (csum->acc > 0xffff) csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16); } static uint16_t csum_inet_digest(struct csum_inet* csum) { return ~csum->acc; } static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* uctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } doexit(sig); } static void install_segv_handler() { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static uint64_t current_time_ms() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) fail("clock_gettime failed"); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(%d, SOCK_STREAM, IPPROTO_TCP)", family); for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(IPT_SO_GET_INFO)"); } if (table->info.size > sizeof(table->replace.entrytable)) fail("table size is too large: %u", table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("too many counters: %u", table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(IPT_SO_GET_ENTRIES)"); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(%d, SOCK_STREAM, IPPROTO_TCP)", family); for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) fail("getsockopt(IPT_SO_GET_INFO)"); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(IPT_SO_GET_ENTRIES)"); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) fail("setsockopt(IPT_SO_SET_REPLACE)"); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(ARPT_SO_GET_INFO)"); } if (table->info.size > sizeof(table->replace.entrytable)) fail("table size is too large: %u", table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("too many counters: %u", table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(ARPT_SO_GET_ENTRIES)"); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) fail("getsockopt(ARPT_SO_GET_INFO)"); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(ARPT_SO_GET_ENTRIES)"); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) fail("setsockopt(ARPT_SO_SET_REPLACE)"); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void test(); void loop() { int iter; checkpoint_net_namespace(); for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) fail("loop fork failed"); if (pid == 0) { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); test(); doexit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { int res = waitpid(-1, &status, __WALL | WNOHANG); if (res == pid) break; usleep(1000); if (current_time_ms() - start > 5 * 1000) { kill(-pid, SIGKILL); kill(pid, SIGKILL); while (waitpid(-1, &status, __WALL) != pid) { } break; } } reset_net_namespace(); } } struct thread_t { int created, running, call; pthread_t th; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static int collide; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); } return 0; } static void execute(int num_calls) { int call, thread; running = 0; for (call = 0; call < num_calls; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); pthread_create(&th->th, &attr, thr, th); } if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) { th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); if (collide && call % 2) break; struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 20 * 1000 * 1000; syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts); if (running) usleep((call == num_calls - 1) ? 10000 : 1000); break; } } } } #ifndef __NR_bpf #define __NR_bpf 321 #endif long r[3]; uint64_t procid; void execute_call(int call) { switch (call) { case 0: syscall(__NR_mmap, 0x20000000, 0xfff000, 3, 0x32, -1, 0); break; case 1: NONFAILING(*(uint32_t*)0x20000000 = 0xe8); syscall(__NR_getsockopt, -1, 0, 0x11, 0x20000f18, 0x20000000); break; case 2: r[0] = syscall(__NR_socket, 2, 1, 0); break; case 3: NONFAILING(*(uint16_t*)0x20e5b000 = 2); NONFAILING(*(uint16_t*)0x20e5b002 = htobe16(0x4e20 + procid * 4)); NONFAILING(*(uint32_t*)0x20e5b004 = htobe32(0xe0000001)); NONFAILING(*(uint8_t*)0x20e5b008 = 0); NONFAILING(*(uint8_t*)0x20e5b009 = 0); NONFAILING(*(uint8_t*)0x20e5b00a = 0); NONFAILING(*(uint8_t*)0x20e5b00b = 0); NONFAILING(*(uint8_t*)0x20e5b00c = 0); NONFAILING(*(uint8_t*)0x20e5b00d = 0); NONFAILING(*(uint8_t*)0x20e5b00e = 0); NONFAILING(*(uint8_t*)0x20e5b00f = 0); syscall(__NR_bind, r[0], 0x20e5b000, 0x10); break; case 4: NONFAILING(*(uint16_t*)0x20ccb000 = 2); NONFAILING(*(uint16_t*)0x20ccb002 = htobe16(0x4e20 + procid * 4)); NONFAILING(*(uint32_t*)0x20ccb004 = htobe32(0)); NONFAILING(*(uint8_t*)0x20ccb008 = 0); NONFAILING(*(uint8_t*)0x20ccb009 = 0); NONFAILING(*(uint8_t*)0x20ccb00a = 0); NONFAILING(*(uint8_t*)0x20ccb00b = 0); NONFAILING(*(uint8_t*)0x20ccb00c = 0); NONFAILING(*(uint8_t*)0x20ccb00d = 0); NONFAILING(*(uint8_t*)0x20ccb00e = 0); NONFAILING(*(uint8_t*)0x20ccb00f = 0); syscall(__NR_connect, r[0], 0x20ccb000, 0x10); break; case 5: NONFAILING(*(uint32_t*)0x20eb0fb8 = 1); NONFAILING(*(uint32_t*)0x20eb0fbc = 3); NONFAILING(*(uint64_t*)0x20eb0fc0 = 0x209ff000); NONFAILING(*(uint64_t*)0x20eb0fc8 = 0x202bf000); NONFAILING(*(uint32_t*)0x20eb0fd0 = 4); NONFAILING(*(uint32_t*)0x20eb0fd4 = 0x38b); NONFAILING(*(uint64_t*)0x20eb0fd8 = 0x206ab000); NONFAILING(*(uint32_t*)0x20eb0fe0 = 0); NONFAILING(*(uint32_t*)0x20eb0fe4 = 0); NONFAILING(*(uint8_t*)0x20eb0fe8 = 0); NONFAILING(*(uint8_t*)0x20eb0fe9 = 0); NONFAILING(*(uint8_t*)0x20eb0fea = 0); NONFAILING(*(uint8_t*)0x20eb0feb = 0); NONFAILING(*(uint8_t*)0x20eb0fec = 0); NONFAILING(*(uint8_t*)0x20eb0fed = 0); NONFAILING(*(uint8_t*)0x20eb0fee = 0); NONFAILING(*(uint8_t*)0x20eb0fef = 0); NONFAILING(*(uint8_t*)0x20eb0ff0 = 0); NONFAILING(*(uint8_t*)0x20eb0ff1 = 0); NONFAILING(*(uint8_t*)0x20eb0ff2 = 0); NONFAILING(*(uint8_t*)0x20eb0ff3 = 0); NONFAILING(*(uint8_t*)0x20eb0ff4 = 0); NONFAILING(*(uint8_t*)0x20eb0ff5 = 0); NONFAILING(*(uint8_t*)0x20eb0ff6 = 0); NONFAILING(*(uint8_t*)0x20eb0ff7 = 0); NONFAILING(*(uint32_t*)0x20eb0ff8 = 0); NONFAILING(*(uint8_t*)0x209ff000 = 0x18); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x209ff001, 0, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x209ff001, 0, 4, 4)); NONFAILING(*(uint16_t*)0x209ff002 = 0); NONFAILING(*(uint32_t*)0x209ff004 = 0x80000001); NONFAILING(*(uint8_t*)0x209ff008 = 0); NONFAILING(*(uint8_t*)0x209ff009 = 0); NONFAILING(*(uint16_t*)0x209ff00a = 0); NONFAILING(*(uint32_t*)0x209ff00c = 0); NONFAILING(*(uint8_t*)0x209ff010 = 0x95); NONFAILING(*(uint8_t*)0x209ff011 = 0); NONFAILING(*(uint16_t*)0x209ff012 = 0); NONFAILING(*(uint32_t*)0x209ff014 = 0); NONFAILING(memcpy((void*)0x202bf000, "syzkaller", 10)); r[1] = syscall(__NR_bpf, 5, 0x20eb0fb8, 0x48); break; case 6: r[2] = syscall(__NR_socket, 0x29, 2, 0); break; case 7: NONFAILING(*(uint32_t*)0x2031aff8 = r[0]); NONFAILING(*(uint32_t*)0x2031affc = r[1]); syscall(__NR_ioctl, r[2], 0x89e0, 0x2031aff8); break; case 8: NONFAILING(*(uint32_t*)0x20000000 = 0); NONFAILING(*(uint16_t*)0x20000008 = 2); NONFAILING(*(uint16_t*)0x2000000a = htobe16(0x4e20 + procid * 4)); NONFAILING(*(uint32_t*)0x2000000c = htobe32(0x7f000001)); NONFAILING(*(uint8_t*)0x20000010 = 0); NONFAILING(*(uint8_t*)0x20000011 = 0); NONFAILING(*(uint8_t*)0x20000012 = 0); NONFAILING(*(uint8_t*)0x20000013 = 0); NONFAILING(*(uint8_t*)0x20000014 = 0); NONFAILING(*(uint8_t*)0x20000015 = 0); NONFAILING(*(uint8_t*)0x20000016 = 0); NONFAILING(*(uint8_t*)0x20000017 = 0); NONFAILING(*(uint64_t*)0x20000018 = 0); NONFAILING(*(uint64_t*)0x20000020 = 0); NONFAILING(*(uint64_t*)0x20000028 = 0); NONFAILING(*(uint64_t*)0x20000030 = 0); NONFAILING(*(uint64_t*)0x20000038 = 0); NONFAILING(*(uint64_t*)0x20000040 = 0); NONFAILING(*(uint64_t*)0x20000048 = 0); NONFAILING(*(uint64_t*)0x20000050 = 0); NONFAILING(*(uint64_t*)0x20000058 = 0); NONFAILING(*(uint64_t*)0x20000060 = 0); NONFAILING(*(uint64_t*)0x20000068 = 0); NONFAILING(*(uint64_t*)0x20000070 = 0); NONFAILING(*(uint64_t*)0x20000078 = 0); NONFAILING(*(uint64_t*)0x20000080 = 0); NONFAILING(*(uint64_t*)0x20000088 = 0); NONFAILING(*(uint16_t*)0x20000090 = 0x100); NONFAILING(*(uint16_t*)0x20000092 = 0x90a0); NONFAILING(*(uint32_t*)0x20000ffc = 0x98); syscall(__NR_getsockopt, 0xffffff9c, 0x84, 0x1f, 0x20000000, 0x20000ffc); break; case 9: NONFAILING(*(uint8_t*)0x20004fb1 = 1); NONFAILING(*(uint8_t*)0x20004fb2 = 0x80); NONFAILING(*(uint8_t*)0x20004fb3 = 0xc2); NONFAILING(*(uint8_t*)0x20004fb4 = 0); NONFAILING(*(uint8_t*)0x20004fb5 = 0); NONFAILING(*(uint8_t*)0x20004fb6 = 0); NONFAILING(*(uint8_t*)0x20004fb7 = 0xaa); NONFAILING(*(uint8_t*)0x20004fb8 = 0xaa); NONFAILING(*(uint8_t*)0x20004fb9 = 0xaa); NONFAILING(*(uint8_t*)0x20004fba = 0xaa); NONFAILING(*(uint8_t*)0x20004fbb = 0); NONFAILING(*(uint8_t*)0x20004fbc = 0); NONFAILING(*(uint16_t*)0x20004fbd = htobe16(0x800)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20004fbf, 5, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20004fbf, 4, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20004fc0, 0, 0, 2)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20004fc0, 0, 2, 6)); NONFAILING(*(uint16_t*)0x20004fc1 = htobe16(0x1c)); NONFAILING(*(uint16_t*)0x20004fc3 = 0); NONFAILING(*(uint16_t*)0x20004fc5 = htobe16(0)); NONFAILING(*(uint8_t*)0x20004fc7 = 0); NONFAILING(*(uint8_t*)0x20004fc8 = 0x11); NONFAILING(*(uint16_t*)0x20004fc9 = 0); NONFAILING(*(uint8_t*)0x20004fcb = 0xac); NONFAILING(*(uint8_t*)0x20004fcc = 0x14); NONFAILING(*(uint8_t*)0x20004fcd = 0); NONFAILING(*(uint8_t*)0x20004fce = 0xaa); NONFAILING(*(uint32_t*)0x20004fcf = htobe32(0xe0000001)); NONFAILING(*(uint16_t*)0x20004fd3 = 0); NONFAILING(*(uint16_t*)0x20004fd5 = htobe16(0x4e23 + procid * 4)); NONFAILING(*(uint16_t*)0x20004fd7 = htobe16(8)); NONFAILING(*(uint16_t*)0x20004fd9 = 0); struct csum_inet csum_1; csum_inet_init(&csum_1); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x20004fcb, 4)); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x20004fcf, 4)); uint16_t csum_1_chunk_2 = 0x1100; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 2); uint16_t csum_1_chunk_3 = 0x800; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 2); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x20004fd3, 8)); NONFAILING(*(uint16_t*)0x20004fd9 = csum_inet_digest(&csum_1)); struct csum_inet csum_2; csum_inet_init(&csum_2); NONFAILING(csum_inet_update(&csum_2, (const uint8_t*)0x20004fbf, 20)); NONFAILING(*(uint16_t*)0x20004fc9 = csum_inet_digest(&csum_2)); break; } } void test() { memset(r, -1, sizeof(r)); execute(10); collide = 1; execute(10); } int main() { for (procid = 0; procid < 8; procid++) { if (fork() == 0) { install_segv_handler(); for (;;) { loop(); } } } sleep(1000000); return 0; }