// https://syzkaller.appspot.com/bug?id=6bf42326e0930f0a844a1d53256c0fb15423dda1 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static __thread int clone_ongoing; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { if (__atomic_load_n(&clone_ongoing, __ATOMIC_RELAXED) != 0) { exit(sig); } uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0; int valid = addr < prog_start || addr > prog_end; if (skip && valid) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ ({ \ int ok = 1; \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } else \ ok = 0; \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ ok; \ }) static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[4096]; }; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; if (size > 0) memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static void netlink_nest(struct nlmsg* nlmsg, int typ) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_type = typ; nlmsg->pos += sizeof(*attr); nlmsg->nested[nlmsg->nesting++] = attr; } static void netlink_done(struct nlmsg* nlmsg) { struct nlattr* attr = nlmsg->nested[--nlmsg->nesting]; attr->nla_len = nlmsg->pos - (char*)attr; } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len, bool dofail) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != (ssize_t)hdr->nlmsg_len) { if (dofail) exit(1); return -1; } n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (reply_len) *reply_len = 0; if (n < 0) { if (dofail) exit(1); return -1; } if (n < (ssize_t)sizeof(struct nlmsghdr)) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type == NLMSG_DONE) return 0; if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type != NLMSG_ERROR) { errno = EINVAL; if (dofail) exit(1); return -1; } errno = -((struct nlmsgerr*)(hdr + 1))->error; return -errno; } static int netlink_send(struct nlmsg* nlmsg, int sock) { return netlink_send_ext(nlmsg, sock, 0, NULL, true); } static int netlink_query_family_id(struct nlmsg* nlmsg, int sock, const char* family_name, bool dofail) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = CTRL_CMD_GETFAMILY; netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name, strnlen(family_name, GENL_NAMSIZ - 1) + 1); int n = 0; int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail); if (err < 0) { return -1; } uint16_t id = 0; struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) { id = *(uint16_t*)(attr + 1); break; } } if (!id) { errno = EINVAL; return -1; } recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); return id; } static void netlink_add_device_impl(struct nlmsg* nlmsg, const char* type, const char* name, bool up) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; netlink_init(nlmsg, RTM_NEWLINK, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); if (name) netlink_attr(nlmsg, IFLA_IFNAME, name, strlen(name)); netlink_nest(nlmsg, IFLA_LINKINFO); netlink_attr(nlmsg, IFLA_INFO_KIND, type, strlen(type)); } static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up, const char* master, const void* mac, int macsize, const char* new_name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; hdr.ifi_index = if_nametoindex(name); netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr)); if (new_name) netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize); netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize); return netlink_send(nlmsg, sock); } static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr)); if (err < 0) { } } static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr)); if (err < 0) { } } static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, NDA_DST, addr, addrsize); netlink_attr(nlmsg, NDA_LLADDR, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static struct nlmsg nlmsg; static int tunfd = -1; #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 200; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { exit(1); } char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL); close(sock); } #define MAX_FDS 30 #define BTPROTO_HCI 1 #define ACL_LINK 1 #define SCAN_PAGE 2 typedef struct { uint8_t b[6]; } __attribute__((packed)) bdaddr_t; #define HCI_COMMAND_PKT 1 #define HCI_EVENT_PKT 4 #define HCI_VENDOR_PKT 0xff struct hci_command_hdr { uint16_t opcode; uint8_t plen; } __attribute__((packed)); struct hci_event_hdr { uint8_t evt; uint8_t plen; } __attribute__((packed)); #define HCI_EV_CONN_COMPLETE 0x03 struct hci_ev_conn_complete { uint8_t status; uint16_t handle; bdaddr_t bdaddr; uint8_t link_type; uint8_t encr_mode; } __attribute__((packed)); #define HCI_EV_CONN_REQUEST 0x04 struct hci_ev_conn_request { bdaddr_t bdaddr; uint8_t dev_class[3]; uint8_t link_type; } __attribute__((packed)); #define HCI_EV_REMOTE_FEATURES 0x0b struct hci_ev_remote_features { uint8_t status; uint16_t handle; uint8_t features[8]; } __attribute__((packed)); #define HCI_EV_CMD_COMPLETE 0x0e struct hci_ev_cmd_complete { uint8_t ncmd; uint16_t opcode; } __attribute__((packed)); #define HCI_OP_WRITE_SCAN_ENABLE 0x0c1a #define HCI_OP_READ_BUFFER_SIZE 0x1005 struct hci_rp_read_buffer_size { uint8_t status; uint16_t acl_mtu; uint8_t sco_mtu; uint16_t acl_max_pkt; uint16_t sco_max_pkt; } __attribute__((packed)); #define HCI_OP_READ_BD_ADDR 0x1009 struct hci_rp_read_bd_addr { uint8_t status; bdaddr_t bdaddr; } __attribute__((packed)); #define HCI_EV_LE_META 0x3e struct hci_ev_le_meta { uint8_t subevent; } __attribute__((packed)); #define HCI_EV_LE_CONN_COMPLETE 0x01 struct hci_ev_le_conn_complete { uint8_t status; uint16_t handle; uint8_t role; uint8_t bdaddr_type; bdaddr_t bdaddr; uint16_t interval; uint16_t latency; uint16_t supervision_timeout; uint8_t clk_accurancy; } __attribute__((packed)); struct hci_dev_req { uint16_t dev_id; uint32_t dev_opt; }; struct vhci_vendor_pkt_request { uint8_t type; uint8_t opcode; } __attribute__((packed)); struct vhci_pkt { uint8_t type; union { struct { uint8_t opcode; uint16_t id; } __attribute__((packed)) vendor_pkt; struct hci_command_hdr command_hdr; }; } __attribute__((packed)); #define HCIDEVUP _IOW('H', 201, int) #define HCISETSCAN _IOW('H', 221, int) static int vhci_fd = -1; static void rfkill_unblock_all() { int fd = open("/dev/rfkill", O_WRONLY); if (fd < 0) exit(1); struct rfkill_event event = {0}; event.idx = 0; event.type = RFKILL_TYPE_ALL; event.op = RFKILL_OP_CHANGE_ALL; event.soft = 0; event.hard = 0; if (write(fd, &event, sizeof(event)) < 0) exit(1); close(fd); } static void hci_send_event_packet(int fd, uint8_t evt, void* data, size_t data_len) { struct iovec iv[3]; struct hci_event_hdr hdr; hdr.evt = evt; hdr.plen = data_len; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = data; iv[2].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static void hci_send_event_cmd_complete(int fd, uint16_t opcode, void* data, size_t data_len) { struct iovec iv[4]; struct hci_event_hdr hdr; hdr.evt = HCI_EV_CMD_COMPLETE; hdr.plen = sizeof(struct hci_ev_cmd_complete) + data_len; struct hci_ev_cmd_complete evt_hdr; evt_hdr.ncmd = 1; evt_hdr.opcode = opcode; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = &evt_hdr; iv[2].iov_len = sizeof(evt_hdr); iv[3].iov_base = data; iv[3].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static bool process_command_pkt(int fd, char* buf, ssize_t buf_size) { struct hci_command_hdr* hdr = (struct hci_command_hdr*)buf; if (buf_size < (ssize_t)sizeof(struct hci_command_hdr) || hdr->plen != buf_size - sizeof(struct hci_command_hdr)) exit(1); switch (hdr->opcode) { case HCI_OP_WRITE_SCAN_ENABLE: { uint8_t status = 0; hci_send_event_cmd_complete(fd, hdr->opcode, &status, sizeof(status)); return true; } case HCI_OP_READ_BD_ADDR: { struct hci_rp_read_bd_addr rp = {0}; rp.status = 0; memset(&rp.bdaddr, 0xaa, 6); hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } case HCI_OP_READ_BUFFER_SIZE: { struct hci_rp_read_buffer_size rp = {0}; rp.status = 0; rp.acl_mtu = 1021; rp.sco_mtu = 96; rp.acl_max_pkt = 4; rp.sco_max_pkt = 6; hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } } char dummy[0xf9] = {0}; hci_send_event_cmd_complete(fd, hdr->opcode, dummy, sizeof(dummy)); return false; } static void* event_thread(void* arg) { while (1) { char buf[1024] = {0}; ssize_t buf_size = read(vhci_fd, buf, sizeof(buf)); if (buf_size < 0) exit(1); if (buf_size > 0 && buf[0] == HCI_COMMAND_PKT) { if (process_command_pkt(vhci_fd, buf + 1, buf_size - 1)) break; } } return NULL; } #define HCI_HANDLE_1 200 #define HCI_HANDLE_2 201 #define HCI_PRIMARY 0 #define HCI_OP_RESET 0x0c03 static void initialize_vhci() { int hci_sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (hci_sock < 0) exit(1); vhci_fd = open("/dev/vhci", O_RDWR); if (vhci_fd == -1) exit(1); const int kVhciFd = 202; if (dup2(vhci_fd, kVhciFd) < 0) exit(1); close(vhci_fd); vhci_fd = kVhciFd; struct vhci_vendor_pkt_request vendor_pkt_req = {HCI_VENDOR_PKT, HCI_PRIMARY}; if (write(vhci_fd, &vendor_pkt_req, sizeof(vendor_pkt_req)) != sizeof(vendor_pkt_req)) exit(1); struct vhci_pkt vhci_pkt; if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt)) exit(1); if (vhci_pkt.type == HCI_COMMAND_PKT && vhci_pkt.command_hdr.opcode == HCI_OP_RESET) { char response[1] = {0}; hci_send_event_cmd_complete(vhci_fd, HCI_OP_RESET, response, sizeof(response)); if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt)) exit(1); } if (vhci_pkt.type != HCI_VENDOR_PKT) exit(1); int dev_id = vhci_pkt.vendor_pkt.id; pthread_t th; if (pthread_create(&th, NULL, event_thread, NULL)) exit(1); int ret = ioctl(hci_sock, HCIDEVUP, dev_id); if (ret) { if (errno == ERFKILL) { rfkill_unblock_all(); ret = ioctl(hci_sock, HCIDEVUP, dev_id); } if (ret && errno != EALREADY) exit(1); } struct hci_dev_req dr = {0}; dr.dev_id = dev_id; dr.dev_opt = SCAN_PAGE; if (ioctl(hci_sock, HCISETSCAN, &dr)) exit(1); struct hci_ev_conn_request request; memset(&request, 0, sizeof(request)); memset(&request.bdaddr, 0xaa, 6); *(uint8_t*)&request.bdaddr.b[5] = 0x10; request.link_type = ACL_LINK; hci_send_event_packet(vhci_fd, HCI_EV_CONN_REQUEST, &request, sizeof(request)); struct hci_ev_conn_complete complete; memset(&complete, 0, sizeof(complete)); complete.status = 0; complete.handle = HCI_HANDLE_1; memset(&complete.bdaddr, 0xaa, 6); *(uint8_t*)&complete.bdaddr.b[5] = 0x10; complete.link_type = ACL_LINK; complete.encr_mode = 0; hci_send_event_packet(vhci_fd, HCI_EV_CONN_COMPLETE, &complete, sizeof(complete)); struct hci_ev_remote_features features; memset(&features, 0, sizeof(features)); features.status = 0; features.handle = HCI_HANDLE_1; hci_send_event_packet(vhci_fd, HCI_EV_REMOTE_FEATURES, &features, sizeof(features)); struct { struct hci_ev_le_meta le_meta; struct hci_ev_le_conn_complete le_conn; } le_conn; memset(&le_conn, 0, sizeof(le_conn)); le_conn.le_meta.subevent = HCI_EV_LE_CONN_COMPLETE; memset(&le_conn.le_conn.bdaddr, 0xaa, 6); *(uint8_t*)&le_conn.le_conn.bdaddr.b[5] = 0x11; le_conn.le_conn.role = 1; le_conn.le_conn.handle = HCI_HANDLE_2; hci_send_event_packet(vhci_fd, HCI_EV_LE_META, &le_conn, sizeof(le_conn)); pthread_join(th, NULL); close(hci_sock); } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void setup_binderfs() { if (mkdir("/dev/binderfs", 0777)) { } if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) { } if (symlink("/dev/binderfs", "./binderfs")) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } static int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); initialize_vhci(); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535"); initialize_tun(); setup_binderfs(); loop(); exit(1); } static int inject_fault(int nth) { int fd; fd = open("/proc/thread-self/fail-nth", O_RDWR); if (fd == -1) exit(1); char buf[16]; sprintf(buf, "%d", nth); if (write(fd, buf, strlen(buf)) != (ssize_t)strlen(buf)) exit(1); return fd; } static void close_fds() { for (int fd = 3; fd < MAX_FDS; fd++) close(fd); } static void setup_fault() { static struct { const char* file; const char* val; bool fatal; } files[] = { {"/sys/kernel/debug/failslab/ignore-gfp-wait", "N", true}, {"/sys/kernel/debug/fail_futex/ignore-private", "N", false}, {"/sys/kernel/debug/fail_page_alloc/ignore-gfp-highmem", "N", false}, {"/sys/kernel/debug/fail_page_alloc/ignore-gfp-wait", "N", false}, {"/sys/kernel/debug/fail_page_alloc/min-order", "0", false}, }; unsigned i; for (i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].file, files[i].val)) { if (files[i].fatal) exit(1); } } } static void setup_usb() { if (chmod("/dev/raw-gadget", 0666)) exit(1); } static void setup_sysctl() { char mypid[32]; snprintf(mypid, sizeof(mypid), "%d", getpid()); struct { const char* name; const char* data; } files[] = { {"/sys/kernel/debug/x86/nmi_longest_ns", "10000000000"}, {"/proc/sys/kernel/hung_task_check_interval_secs", "20"}, {"/proc/sys/net/core/bpf_jit_kallsyms", "1"}, {"/proc/sys/net/core/bpf_jit_harden", "0"}, {"/proc/sys/kernel/kptr_restrict", "0"}, {"/proc/sys/kernel/softlockup_all_cpu_backtrace", "1"}, {"/proc/sys/fs/mount-max", "100"}, {"/proc/sys/vm/oom_dump_tasks", "0"}, {"/proc/sys/debug/exception-trace", "0"}, {"/proc/sys/kernel/printk", "7 4 1 3"}, {"/proc/sys/kernel/keys/gc_delay", "1"}, {"/proc/sys/vm/oom_kill_allocating_task", "1"}, {"/proc/sys/kernel/ctrl-alt-del", "0"}, {"/proc/sys/kernel/cad_pid", mypid}, }; for (size_t i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].name, files[i].data)) printf("write to %s failed: %s\n", files[i].name, strerror(errno)); } } #define NL802154_CMD_SET_SHORT_ADDR 11 #define NL802154_ATTR_IFINDEX 3 #define NL802154_ATTR_SHORT_ADDR 10 static void setup_802154() { int sock_route = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock_route == -1) exit(1); int sock_generic = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock_generic < 0) exit(1); int nl802154_family_id = netlink_query_family_id(&nlmsg, sock_generic, "nl802154", true); for (int i = 0; i < 2; i++) { char devname[] = "wpan0"; devname[strlen(devname) - 1] += i; uint64_t hwaddr = 0xaaaaaaaaaaaa0002 + (i << 8); uint16_t shortaddr = 0xaaa0 + i; int ifindex = if_nametoindex(devname); struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = NL802154_CMD_SET_SHORT_ADDR; netlink_init(&nlmsg, nl802154_family_id, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(&nlmsg, NL802154_ATTR_IFINDEX, &ifindex, sizeof(ifindex)); netlink_attr(&nlmsg, NL802154_ATTR_SHORT_ADDR, &shortaddr, sizeof(shortaddr)); int err = netlink_send(&nlmsg, sock_generic); if (err < 0) { } netlink_device_change(&nlmsg, sock_route, devname, true, 0, &hwaddr, sizeof(hwaddr), 0); if (i == 0) { netlink_add_device_impl(&nlmsg, "lowpan", "lowpan0", false); netlink_done(&nlmsg); netlink_attr(&nlmsg, IFLA_LINK, &ifindex, sizeof(ifindex)); int err = netlink_send(&nlmsg, sock_route); if (err < 0) { } } } close(sock_route); close(sock_generic); } uint64_t r[4] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff, 0x0}; void loop(void) { intptr_t res = 0; res = syscall(__NR_socket, 0x10ul, 3ul, 0); if (res != -1) r[0] = res; res = syscall(__NR_socket, 0x10ul, 3ul, 0); if (res != -1) r[1] = res; res = syscall(__NR_socket, 0x10ul, 3ul, 0); if (res != -1) r[2] = res; NONFAILING(*(uint64_t*)0x20000180 = 0); NONFAILING(*(uint32_t*)0x20000188 = 0); NONFAILING(*(uint64_t*)0x20000190 = 0x20000140); NONFAILING(*(uint64_t*)0x20000140 = 0); NONFAILING(*(uint64_t*)0x20000148 = 0x140); NONFAILING(*(uint64_t*)0x20000198 = 1); NONFAILING(*(uint64_t*)0x200001a0 = 0); NONFAILING(*(uint64_t*)0x200001a8 = 0); NONFAILING(*(uint32_t*)0x200001b0 = 0); syscall(__NR_sendmsg, r[2], 0x20000180ul, 0ul); NONFAILING(*(uint32_t*)0x20000100 = 0xab); res = syscall(__NR_getsockname, r[2], 0x20000080ul, 0x20000100ul); if (res != -1) NONFAILING(r[3] = *(uint32_t*)0x20000084); NONFAILING(*(uint64_t*)0x20005840 = 0); NONFAILING(*(uint32_t*)0x20005848 = 0); NONFAILING(*(uint64_t*)0x20005850 = 0x20000780); NONFAILING(*(uint64_t*)0x20000780 = 0x20000240); NONFAILING(memcpy((void*)0x20000240, "\x48\x00\x00\x00\x24\x00\x0b\x0e\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00", 20)); NONFAILING(*(uint32_t*)0x20000254 = r[3]); NONFAILING( memcpy((void*)0x20000258, "\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\x00\x00\x08\x00\x01\x00" "\x68\x74\x62\x00\x1c\x00\x02\x00\x18\x00\x02\x00\x03", 29)); NONFAILING(*(uint64_t*)0x20000788 = 0x48); NONFAILING(*(uint64_t*)0x20005858 = 1); NONFAILING(*(uint64_t*)0x20005860 = 0); NONFAILING(*(uint64_t*)0x20005868 = 0); NONFAILING(*(uint32_t*)0x20005870 = 0); syscall(__NR_sendmsg, r[1], 0x20005840ul, 0ul); NONFAILING(*(uint64_t*)0x200000c0 = 0); NONFAILING(*(uint32_t*)0x200000c8 = 0); NONFAILING(*(uint64_t*)0x200000d0 = 0x20000180); NONFAILING(*(uint64_t*)0x20000180 = 0x200007c0); NONFAILING(*(uint32_t*)0x200007c0 = 0x40); NONFAILING(*(uint16_t*)0x200007c4 = 0x2c); NONFAILING(*(uint16_t*)0x200007c6 = 0xd27); NONFAILING(*(uint32_t*)0x200007c8 = 0); NONFAILING(*(uint32_t*)0x200007cc = 0); NONFAILING(*(uint8_t*)0x200007d0 = 0); NONFAILING(*(uint8_t*)0x200007d1 = 0); NONFAILING(*(uint16_t*)0x200007d2 = 0); NONFAILING(*(uint32_t*)0x200007d4 = r[3]); NONFAILING(*(uint16_t*)0x200007d8 = 0); NONFAILING(*(uint16_t*)0x200007da = 0); NONFAILING(*(uint16_t*)0x200007dc = 0); NONFAILING(*(uint16_t*)0x200007de = 0); NONFAILING(*(uint16_t*)0x200007e0 = 0xfff3); NONFAILING(*(uint16_t*)0x200007e2 = 0); NONFAILING(*(uint16_t*)0x200007e4 = 0xb); NONFAILING(*(uint16_t*)0x200007e6 = 1); NONFAILING(memcpy((void*)0x200007e8, "flower\000", 7)); NONFAILING(*(uint16_t*)0x200007f0 = 0x10); NONFAILING(*(uint16_t*)0x200007f2 = 2); NONFAILING(*(uint16_t*)0x200007f4 = 0xa); NONFAILING(*(uint16_t*)0x200007f6 = 4); NONFAILING(memset((void*)0x200007f8, 170, 5)); NONFAILING(*(uint8_t*)0x200007fd = 0xaa); NONFAILING(*(uint64_t*)0x20000188 = 0x40); NONFAILING(*(uint64_t*)0x200000d8 = 1); NONFAILING(*(uint64_t*)0x200000e0 = 0); NONFAILING(*(uint64_t*)0x200000e8 = 0); NONFAILING(*(uint32_t*)0x200000f0 = 0); inject_fault(19); syscall(__NR_sendmsg, r[0], 0x200000c0ul, 0ul); close_fds(); } int main(void) { syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); setup_sysctl(); setup_fault(); setup_usb(); setup_802154(); install_segv_handler(); do_sandbox_none(); return 0; }