// https://syzkaller.appspot.com/bug?id=2b6a5e7ed9c189aadc974fc5ff168b131c005947 // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } #include #include #include #include #include #include #include #include #include #include const int kFailStatus = 67; const int kRetryStatus = 69; static void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } #define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1) #define BITMASK_LEN_OFF(type, bf_off, bf_len) \ (type)(BITMASK_LEN(type, (bf_len)) << (bf_off)) #define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \ if ((bf_off) == 0 && (bf_len) == 0) { \ *(type*)(addr) = (type)(val); \ } else { \ type new_val = *(type*)(addr); \ new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \ new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \ *(type*)(addr) = new_val; \ } struct csum_inet { uint32_t acc; }; static void csum_inet_init(struct csum_inet* csum) { csum->acc = 0; } static void csum_inet_update(struct csum_inet* csum, const uint8_t* data, size_t length) { if (length == 0) return; size_t i; for (i = 0; i < length - 1; i += 2) csum->acc += *(uint16_t*)&data[i]; if (length & 1) csum->acc += (uint16_t)data[length - 1]; while (csum->acc > 0xffff) csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16); } static uint16_t csum_inet_digest(struct csum_inet* csum) { return ~csum->acc; } static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* uctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } doexit(sig); } static void install_segv_handler() { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static void use_temporary_dir() { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) fail("failed to mkdtemp"); if (chmod(tmpdir, 0777)) fail("failed to chmod"); if (chdir(tmpdir)) fail("failed to chdir"); } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 8 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); #define CLONE_NEWCGROUP 0x02000000 unshare(CLONE_NEWNS); unshare(CLONE_NEWIPC); unshare(CLONE_NEWCGROUP); unshare(CLONE_NEWNET); unshare(CLONE_NEWUTS); unshare(CLONE_SYSVSEM); } static int do_sandbox_none(int executor_pid, bool enable_tun) { unshare(CLONE_NEWPID); int pid = fork(); if (pid < 0) fail("sandbox fork failed"); if (pid) return pid; sandbox_common(); loop(); doexit(1); } static void test(); void loop() { while (1) { test(); } } struct thread_t { int created, running, call; pthread_t th; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static int collide; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); } return 0; } static void execute(int num_calls) { int call, thread; running = 0; for (call = 0; call < num_calls; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); pthread_create(&th->th, &attr, thr, th); } if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) { th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); if (collide && call % 2) break; struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 20 * 1000 * 1000; syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts); if (running) usleep((call == num_calls - 1) ? 10000 : 1000); break; } } } } long r[3]; uint64_t procid; void execute_call(int call) { switch (call) { case 0: syscall(__NR_mmap, 0x20000000, 0xfff000, 3, 0x32, -1, 0); break; case 1: NONFAILING(*(uint64_t*)0x204ecfd0 = 0); NONFAILING(*(uint64_t*)0x204ecfd8 = 0); NONFAILING(*(uint64_t*)0x204ecfe0 = 0x204ec000); NONFAILING(*(uint64_t*)0x204ecfe8 = 0); NONFAILING(*(uint64_t*)0x204ecff0 = 0); NONFAILING(*(uint64_t*)0x204ecff8 = 0x204ecfff); syscall(__NR_ioctl, -1, 0xc0306201, 0x204ecfd0); break; case 2: NONFAILING(memcpy((void*)0x203c4ff7, "/dev/kvm", 9)); r[0] = syscall(__NR_openat, 0xffffffffffffff9c, 0x203c4ff7, 0, 0); break; case 3: r[1] = syscall(__NR_ioctl, r[0], 0xae01, 0); break; case 4: r[2] = syscall(__NR_ioctl, r[1], 0xae41, 0); break; case 5: syscall(__NR_clock_gettime, 0, 0x20000000); break; case 6: NONFAILING(*(uint32_t*)0x20001000 = 0x10005); NONFAILING(*(uint32_t*)0x20001004 = 0); NONFAILING(*(uint64_t*)0x20001008 = 0); NONFAILING(*(uint64_t*)0x20001010 = 0x2000); NONFAILING(*(uint64_t*)0x20001018 = 0x20000000); syscall(__NR_ioctl, r[1], 0x4020ae46, 0x20001000); break; case 7: syscall(__NR_ioctl, r[2], 0xaeb7); break; case 8: syscall(__NR_ioctl, r[2], 0xae80, 0); break; case 9: syscall(__NR_ioctl, r[2], 0xae80, 0); break; case 10: syscall(__NR_fcntl, -1, 0x407, 5); break; case 11: NONFAILING(*(uint8_t*)0x20025000 = 0xaa); NONFAILING(*(uint8_t*)0x20025001 = 0xaa); NONFAILING(*(uint8_t*)0x20025002 = 0xaa); NONFAILING(*(uint8_t*)0x20025003 = 0xaa); NONFAILING(*(uint8_t*)0x20025004 = 0xaa); NONFAILING(*(uint8_t*)0x20025005 = 0 + procid * 1); NONFAILING(*(uint8_t*)0x20025006 = 0xbb); NONFAILING(*(uint8_t*)0x20025007 = 0xbb); NONFAILING(*(uint8_t*)0x20025008 = 0xbb); NONFAILING(*(uint8_t*)0x20025009 = 0xbb); NONFAILING(*(uint8_t*)0x2002500a = 0xbb); NONFAILING(*(uint8_t*)0x2002500b = 0 + procid * 1); NONFAILING(*(uint16_t*)0x2002500c = htobe16(0x800)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2002500e, 6, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2002500e, 4, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2002500f, 0, 0, 2)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x2002500f, 0, 2, 6)); NONFAILING(*(uint16_t*)0x20025010 = htobe16(0x2c)); NONFAILING(*(uint16_t*)0x20025012 = htobe16(0x64 + procid * 4)); NONFAILING(*(uint16_t*)0x20025014 = htobe16(0)); NONFAILING(*(uint8_t*)0x20025016 = 0); NONFAILING(*(uint8_t*)0x20025017 = 4); NONFAILING(*(uint16_t*)0x20025018 = 0); NONFAILING(*(uint8_t*)0x2002501a = 0xac); NONFAILING(*(uint8_t*)0x2002501b = 0x14); NONFAILING(*(uint8_t*)0x2002501c = 0 + procid * 1); NONFAILING(*(uint8_t*)0x2002501d = 0xbb); NONFAILING(*(uint8_t*)0x2002501e = 0xac); NONFAILING(*(uint8_t*)0x2002501f = 0x14); NONFAILING(*(uint8_t*)0x20025020 = 0 + procid * 1); NONFAILING(*(uint8_t*)0x20025021 = 0xaa); NONFAILING(*(uint8_t*)0x20025022 = 0); NONFAILING(*(uint8_t*)0x20025023 = 2); NONFAILING(*(uint16_t*)0x20025026 = htobe16(0x4e20 + procid * 4)); NONFAILING(*(uint16_t*)0x20025028 = htobe16(0x4e20 + procid * 4)); NONFAILING(*(uint32_t*)0x2002502a = 0x42424242); NONFAILING(*(uint32_t*)0x2002502e = 0x42424242); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20025032, 0, 0, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20025032, 0, 1, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, 0x20025032, 5, 4, 4)); NONFAILING(*(uint8_t*)0x20025033 = 0); NONFAILING(*(uint16_t*)0x20025034 = htobe16(0)); NONFAILING(*(uint16_t*)0x20025036 = 0); NONFAILING(*(uint16_t*)0x20025038 = htobe16(0)); struct csum_inet csum_1; csum_inet_init(&csum_1); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x2002501a, 4)); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x2002501e, 4)); uint16_t csum_1_chunk_2 = 0x600; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 2); uint16_t csum_1_chunk_3 = 0x1400; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 2); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x20025026, 20)); NONFAILING(*(uint16_t*)0x20025036 = csum_inet_digest(&csum_1)); struct csum_inet csum_2; csum_inet_init(&csum_2); NONFAILING(csum_inet_update(&csum_2, (const uint8_t*)0x2002500e, 24)); NONFAILING(*(uint16_t*)0x20025018 = csum_inet_digest(&csum_2)); break; } } void test() { memset(r, -1, sizeof(r)); execute(12); collide = 1; execute(12); } int main() { char* cwd = get_current_dir_name(); for (procid = 0; procid < 8; procid++) { if (fork() == 0) { install_segv_handler(); for (;;) { if (chdir(cwd)) fail("failed to chdir"); use_temporary_dir(); int pid = do_sandbox_none(procid, false); int status = 0; while (waitpid(pid, &status, __WALL) != pid) { } } } } sleep(1000000); return 0; }