// https://syzkaller.appspot.com/bug?id=458fcf6e1c7be7f9e2ffef57b9f256384ee45b0a // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static __thread int clone_ongoing; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { if (__atomic_load_n(&clone_ongoing, __ATOMIC_RELAXED) != 0) { exit(sig); } uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0; int valid = addr < prog_start || addr > prog_end; if (skip && valid) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ ({ \ int ok = 1; \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } else \ ok = 0; \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ ok; \ }) static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } #define MAX_FDS 30 #define BTPROTO_HCI 1 #define ACL_LINK 1 #define SCAN_PAGE 2 typedef struct { uint8_t b[6]; } __attribute__((packed)) bdaddr_t; #define HCI_COMMAND_PKT 1 #define HCI_EVENT_PKT 4 #define HCI_VENDOR_PKT 0xff struct hci_command_hdr { uint16_t opcode; uint8_t plen; } __attribute__((packed)); struct hci_event_hdr { uint8_t evt; uint8_t plen; } __attribute__((packed)); #define HCI_EV_CONN_COMPLETE 0x03 struct hci_ev_conn_complete { uint8_t status; uint16_t handle; bdaddr_t bdaddr; uint8_t link_type; uint8_t encr_mode; } __attribute__((packed)); #define HCI_EV_CONN_REQUEST 0x04 struct hci_ev_conn_request { bdaddr_t bdaddr; uint8_t dev_class[3]; uint8_t link_type; } __attribute__((packed)); #define HCI_EV_REMOTE_FEATURES 0x0b struct hci_ev_remote_features { uint8_t status; uint16_t handle; uint8_t features[8]; } __attribute__((packed)); #define HCI_EV_CMD_COMPLETE 0x0e struct hci_ev_cmd_complete { uint8_t ncmd; uint16_t opcode; } __attribute__((packed)); #define HCI_OP_WRITE_SCAN_ENABLE 0x0c1a #define HCI_OP_READ_BUFFER_SIZE 0x1005 struct hci_rp_read_buffer_size { uint8_t status; uint16_t acl_mtu; uint8_t sco_mtu; uint16_t acl_max_pkt; uint16_t sco_max_pkt; } __attribute__((packed)); #define HCI_OP_READ_BD_ADDR 0x1009 struct hci_rp_read_bd_addr { uint8_t status; bdaddr_t bdaddr; } __attribute__((packed)); #define HCI_EV_LE_META 0x3e struct hci_ev_le_meta { uint8_t subevent; } __attribute__((packed)); #define HCI_EV_LE_CONN_COMPLETE 0x01 struct hci_ev_le_conn_complete { uint8_t status; uint16_t handle; uint8_t role; uint8_t bdaddr_type; bdaddr_t bdaddr; uint16_t interval; uint16_t latency; uint16_t supervision_timeout; uint8_t clk_accurancy; } __attribute__((packed)); struct hci_dev_req { uint16_t dev_id; uint32_t dev_opt; }; struct vhci_vendor_pkt_request { uint8_t type; uint8_t opcode; } __attribute__((packed)); struct vhci_pkt { uint8_t type; union { struct { uint8_t opcode; uint16_t id; } __attribute__((packed)) vendor_pkt; struct hci_command_hdr command_hdr; }; } __attribute__((packed)); #define HCIDEVUP _IOW('H', 201, int) #define HCISETSCAN _IOW('H', 221, int) static int vhci_fd = -1; static void rfkill_unblock_all() { int fd = open("/dev/rfkill", O_WRONLY); if (fd < 0) exit(1); struct rfkill_event event = {0}; event.idx = 0; event.type = RFKILL_TYPE_ALL; event.op = RFKILL_OP_CHANGE_ALL; event.soft = 0; event.hard = 0; if (write(fd, &event, sizeof(event)) < 0) exit(1); close(fd); } static void hci_send_event_packet(int fd, uint8_t evt, void* data, size_t data_len) { struct iovec iv[3]; struct hci_event_hdr hdr; hdr.evt = evt; hdr.plen = data_len; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = data; iv[2].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static void hci_send_event_cmd_complete(int fd, uint16_t opcode, void* data, size_t data_len) { struct iovec iv[4]; struct hci_event_hdr hdr; hdr.evt = HCI_EV_CMD_COMPLETE; hdr.plen = sizeof(struct hci_ev_cmd_complete) + data_len; struct hci_ev_cmd_complete evt_hdr; evt_hdr.ncmd = 1; evt_hdr.opcode = opcode; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = &evt_hdr; iv[2].iov_len = sizeof(evt_hdr); iv[3].iov_base = data; iv[3].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static bool process_command_pkt(int fd, char* buf, ssize_t buf_size) { struct hci_command_hdr* hdr = (struct hci_command_hdr*)buf; if (buf_size < (ssize_t)sizeof(struct hci_command_hdr) || hdr->plen != buf_size - sizeof(struct hci_command_hdr)) exit(1); switch (hdr->opcode) { case HCI_OP_WRITE_SCAN_ENABLE: { uint8_t status = 0; hci_send_event_cmd_complete(fd, hdr->opcode, &status, sizeof(status)); return true; } case HCI_OP_READ_BD_ADDR: { struct hci_rp_read_bd_addr rp = {0}; rp.status = 0; memset(&rp.bdaddr, 0xaa, 6); hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } case HCI_OP_READ_BUFFER_SIZE: { struct hci_rp_read_buffer_size rp = {0}; rp.status = 0; rp.acl_mtu = 1021; rp.sco_mtu = 96; rp.acl_max_pkt = 4; rp.sco_max_pkt = 6; hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } } char dummy[0xf9] = {0}; hci_send_event_cmd_complete(fd, hdr->opcode, dummy, sizeof(dummy)); return false; } static void* event_thread(void* arg) { while (1) { char buf[1024] = {0}; ssize_t buf_size = read(vhci_fd, buf, sizeof(buf)); if (buf_size < 0) exit(1); if (buf_size > 0 && buf[0] == HCI_COMMAND_PKT) { if (process_command_pkt(vhci_fd, buf + 1, buf_size - 1)) break; } } return NULL; } #define HCI_HANDLE_1 200 #define HCI_HANDLE_2 201 #define HCI_PRIMARY 0 #define HCI_OP_RESET 0x0c03 static void initialize_vhci() { int hci_sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (hci_sock < 0) exit(1); vhci_fd = open("/dev/vhci", O_RDWR); if (vhci_fd == -1) exit(1); const int kVhciFd = 202; if (dup2(vhci_fd, kVhciFd) < 0) exit(1); close(vhci_fd); vhci_fd = kVhciFd; struct vhci_vendor_pkt_request vendor_pkt_req = {HCI_VENDOR_PKT, HCI_PRIMARY}; if (write(vhci_fd, &vendor_pkt_req, sizeof(vendor_pkt_req)) != sizeof(vendor_pkt_req)) exit(1); struct vhci_pkt vhci_pkt; if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt)) exit(1); if (vhci_pkt.type == HCI_COMMAND_PKT && vhci_pkt.command_hdr.opcode == HCI_OP_RESET) { char response[1] = {0}; hci_send_event_cmd_complete(vhci_fd, HCI_OP_RESET, response, sizeof(response)); if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt)) exit(1); } if (vhci_pkt.type != HCI_VENDOR_PKT) exit(1); int dev_id = vhci_pkt.vendor_pkt.id; pthread_t th; if (pthread_create(&th, NULL, event_thread, NULL)) exit(1); int ret = ioctl(hci_sock, HCIDEVUP, dev_id); if (ret) { if (errno == ERFKILL) { rfkill_unblock_all(); ret = ioctl(hci_sock, HCIDEVUP, dev_id); } if (ret && errno != EALREADY) exit(1); } struct hci_dev_req dr = {0}; dr.dev_id = dev_id; dr.dev_opt = SCAN_PAGE; if (ioctl(hci_sock, HCISETSCAN, &dr)) exit(1); struct hci_ev_conn_request request; memset(&request, 0, sizeof(request)); memset(&request.bdaddr, 0xaa, 6); *(uint8_t*)&request.bdaddr.b[5] = 0x10; request.link_type = ACL_LINK; hci_send_event_packet(vhci_fd, HCI_EV_CONN_REQUEST, &request, sizeof(request)); struct hci_ev_conn_complete complete; memset(&complete, 0, sizeof(complete)); complete.status = 0; complete.handle = HCI_HANDLE_1; memset(&complete.bdaddr, 0xaa, 6); *(uint8_t*)&complete.bdaddr.b[5] = 0x10; complete.link_type = ACL_LINK; complete.encr_mode = 0; hci_send_event_packet(vhci_fd, HCI_EV_CONN_COMPLETE, &complete, sizeof(complete)); struct hci_ev_remote_features features; memset(&features, 0, sizeof(features)); features.status = 0; features.handle = HCI_HANDLE_1; hci_send_event_packet(vhci_fd, HCI_EV_REMOTE_FEATURES, &features, sizeof(features)); struct { struct hci_ev_le_meta le_meta; struct hci_ev_le_conn_complete le_conn; } le_conn; memset(&le_conn, 0, sizeof(le_conn)); le_conn.le_meta.subevent = HCI_EV_LE_CONN_COMPLETE; memset(&le_conn.le_conn.bdaddr, 0xaa, 6); *(uint8_t*)&le_conn.le_conn.bdaddr.b[5] = 0x11; le_conn.le_conn.role = 1; le_conn.le_conn.handle = HCI_HANDLE_2; hci_send_event_packet(vhci_fd, HCI_EV_LE_META, &le_conn, sizeof(le_conn)); pthread_join(th, NULL); close(hci_sock); } #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; uint64_t entrytable[XT_TABLE_SIZE / sizeof(uint64_t)]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { int fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (int i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); socklen_t optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); struct ipt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { int fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (int i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; struct ipt_getinfo info; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); socklen_t optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { struct ipt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } struct xt_counters counters[XT_MAX_ENTRIES]; table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_arptables(void) { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); socklen_t optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); struct arpt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (unsigned i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; struct arpt_getinfo info; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); socklen_t optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { struct arpt_get_entries entries; memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } else { } struct xt_counters counters[XT_MAX_ENTRIES]; table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } #define NF_BR_NUMHOOKS 6 #define EBT_TABLE_MAXNAMELEN 32 #define EBT_CHAIN_MAXNAMELEN 32 #define EBT_BASE_CTL 128 #define EBT_SO_SET_ENTRIES (EBT_BASE_CTL) #define EBT_SO_GET_INFO (EBT_BASE_CTL) #define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1) #define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1) #define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1) struct ebt_replace { char name[EBT_TABLE_MAXNAMELEN]; unsigned int valid_hooks; unsigned int nentries; unsigned int entries_size; struct ebt_entries* hook_entry[NF_BR_NUMHOOKS]; unsigned int num_counters; struct ebt_counter* counters; char* entries; }; struct ebt_entries { unsigned int distinguisher; char name[EBT_CHAIN_MAXNAMELEN]; unsigned int counter_offset; int policy; unsigned int nentries; char data[0] __attribute__((aligned(__alignof__(struct ebt_replace)))); }; struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (size_t i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); socklen_t optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->replace.entries_size > sizeof(table->entrytable)) exit(1); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) exit(1); } close(fd); } static void reset_ebtables() { int fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (unsigned i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; struct ebt_replace replace; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); socklen_t optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) exit(1); replace.num_counters = 0; table->replace.entries = 0; for (unsigned h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { char entrytable[XT_TABLE_SIZE]; memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) exit(1); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } for (unsigned j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void setup_binderfs() { if (mkdir("/dev/binderfs", 0777)) { } if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } static int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); initialize_vhci(); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535"); setup_binderfs(); loop(); exit(1); } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { int iter = 0; DIR* dp = 0; retry: while (umount2(dir, MNT_DETACH | UMOUNT_NOFOLLOW) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } struct dirent* ep = 0; while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, MNT_DETACH | UMOUNT_NOFOLLOW) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, MNT_DETACH | UMOUNT_NOFOLLOW)) exit(1); } } closedir(dp); for (int i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, MNT_DETACH | UMOUNT_NOFOLLOW)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_loop() { checkpoint_net_namespace(); } static void reset_loop() { reset_net_namespace(); } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); if (symlink("/dev/binderfs", "./binderfs")) { } } static void close_fds() { for (int fd = 3; fd < MAX_FDS; fd++) close(fd); } static void setup_usb() { if (chmod("/dev/raw-gadget", 0666)) exit(1); } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; for (call = 0; call < 8; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 50); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { setup_loop(); int iter = 0; for (;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); reset_loop(); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5000) continue; kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: NONFAILING(memcpy((void*)0x20000400, "./file0\000", 8)); syscall(__NR_mkdir, 0x20000400ul, 0ul); break; case 1: res = syscall(__NR_pipe2, 0x20000180ul, 0ul); if (res != -1) { NONFAILING(r[0] = *(uint32_t*)0x20000180); NONFAILING(r[1] = *(uint32_t*)0x20000184); } break; case 2: res = syscall(__NR_dup, r[1]); if (res != -1) r[2] = res; break; case 3: NONFAILING(memcpy((void*)0x20000040, "./file0\000", 8)); NONFAILING(memcpy((void*)0x200001c0, "9p\000", 3)); NONFAILING(memcpy((void*)0x20000300, "trans=fd,", 9)); NONFAILING(memcpy((void*)0x20000309, "rfdno", 5)); NONFAILING(*(uint8_t*)0x2000030e = 0x3d); NONFAILING(sprintf((char*)0x2000030f, "0x%016llx", (long long)r[0])); NONFAILING(*(uint8_t*)0x20000321 = 0x2c); NONFAILING(memcpy((void*)0x20000322, "wfdno", 5)); NONFAILING(*(uint8_t*)0x20000327 = 0x3d); NONFAILING(sprintf((char*)0x20000328, "0x%016llx", (long long)r[2])); NONFAILING(*(uint8_t*)0x2000033a = 0x2c); NONFAILING(*(uint8_t*)0x2000033b = 0); syscall(__NR_mount, 0ul, 0x20000040ul, 0x200001c0ul, 0ul, 0x20000300ul); break; case 4: syscall(__NR_write, r[2], 0ul, 0ul); break; case 5: NONFAILING( memcpy((void*)0x20000800, "\x7f\x0b\x00\x00\x00\x00\x00\x00", 8)); NONFAILING(*(uint64_t*)0x20000808 = 0); NONFAILING(*(uint32_t*)0x20000810 = 0); NONFAILING(*(uint32_t*)0x20000814 = 0); syscall(__NR_write, r[2], 0x20000800ul, 0xb0ul); break; case 6: syscall(__NR_mount, 0ul, 0ul, 0ul, 0ul, 0ul); break; case 7: syscall(__NR_sync); break; } } int main(void) { syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); setup_usb(); install_segv_handler(); use_temporary_dir(); do_sandbox_none(); return 0; }