// https://syzkaller.appspot.com/bug?id=e8f8969c966927d095600d86d93f071cb106e7b6 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) struct csum_inet { uint32_t acc; }; static void csum_inet_init(struct csum_inet* csum) { csum->acc = 0; } static void csum_inet_update(struct csum_inet* csum, const uint8_t* data, size_t length) { if (length == 0) return; size_t i; for (i = 0; i < length - 1; i += 2) csum->acc += *(uint16_t*)&data[i]; if (length & 1) csum->acc += (uint16_t)data[length - 1]; while (csum->acc > 0xffff) csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16); } static uint16_t csum_inet_digest(struct csum_inet* csum) { return ~csum->acc; } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } static struct { char* pos; int nesting; struct nlattr* nested[8]; char buf[1024]; } nlmsg; static void netlink_init(int typ, int flags, const void* data, int size) { memset(&nlmsg, 0, sizeof(nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg.pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg.pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; memcpy(attr + 1, data, size); nlmsg.pos += NLMSG_ALIGN(attr->nla_len); } static int netlink_send(int sock) { if (nlmsg.pos > nlmsg.buf + sizeof(nlmsg.buf) || nlmsg.nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf; hdr->nlmsg_len = nlmsg.pos - nlmsg.buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; unsigned n = sendto(sock, nlmsg.buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != hdr->nlmsg_len) exit(1); n = recv(sock, nlmsg.buf, sizeof(nlmsg.buf), 0); if (n < sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr)) exit(1); if (hdr->nlmsg_type != NLMSG_ERROR) exit(1); return -((struct nlmsgerr*)(hdr + 1))->error; } static void netlink_device_change(int sock, const char* name, bool up, const char* master, const void* mac, int macsize) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; netlink_init(RTM_NEWLINK, 0, &hdr, sizeof(hdr)); netlink_attr(IFLA_IFNAME, name, strlen(name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(IFLA_ADDRESS, mac, macsize); int err = netlink_send(sock); (void)err; } static int netlink_add_addr(int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(IFA_LOCAL, addr, addrsize); netlink_attr(IFA_ADDRESS, addr, addrsize); return netlink_send(sock); } static void netlink_add_addr4(int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(sock, dev, &in_addr, sizeof(in_addr)); (void)err; } static void netlink_add_addr6(int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(sock, dev, &in6_addr, sizeof(in6_addr)); (void)err; } static void netlink_add_neigh(int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(NDA_DST, addr, addrsize); netlink_attr(NDA_LLADDR, mac, macsize); int err = netlink_send(sock); (void)err; } static int tunfd = -1; static int tun_frags_enabled; #define SYZ_TUN_MAX_PACKET_SIZE 1000 #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 #define IFF_NAPI_FRAGS 0x0020 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) exit(1); } if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) exit(1); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN); close(sock); } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN) return -1; if (errno == EBADFD) return -1; exit(1); } return rv; } #define MAX_FRAGS 4 struct vnet_fragmentation { uint32_t full; uint32_t count; uint32_t frags[MAX_FRAGS]; }; static long syz_emit_ethernet(long a0, long a1, long a2) { if (tunfd < 0) return (uintptr_t)-1; uint32_t length = a0; char* data = (char*)a1; struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2; struct iovec vecs[MAX_FRAGS + 1]; uint32_t nfrags = 0; if (!tun_frags_enabled || frags == NULL) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } else { bool full = true; uint32_t i, count = 0; NONFAILING(full = frags->full); NONFAILING(count = frags->count); if (count > MAX_FRAGS) count = MAX_FRAGS; for (i = 0; i < count && length != 0; i++) { uint32_t size = 0; NONFAILING(size = frags->frags[i]); if (size > length) size = length; vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = size; nfrags++; data += size; length -= size; } if (length != 0 && (full || nfrags == 0)) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } } return writev(tunfd, vecs, nfrags); } static void flush_tun() { char data[SYZ_TUN_MAX_PACKET_SIZE]; while (read_tun(&data[0], sizeof(data)) != -1) { } } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); if (unshare(CLONE_NEWNET)) { } initialize_tun(); loop(); exit(1); } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } #define SYZ_HAVE_SETUP_TEST 1 static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); flush_tun(); } #define SYZ_HAVE_RESET_TEST 1 static void reset_test() { int fd; for (fd = 3; fd < 30; fd++) close(fd); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter; for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { setup_test(); execute_one(); reset_test(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5 * 1000) continue; kill_and_wait(pid, &status); break; } } } void execute_one(void) { NONFAILING(memcpy((void*)0x203f3fd5, "\x75\x25\x82\x0a\xed\xb8", 6)); NONFAILING(*(uint8_t*)0x203f3fdb = 0); NONFAILING(*(uint8_t*)0x203f3fdc = 0); NONFAILING(*(uint8_t*)0x203f3fdd = 0x14); NONFAILING(*(uint8_t*)0x203f3fde = 0); NONFAILING(*(uint8_t*)0x203f3fdf = 0); NONFAILING(*(uint8_t*)0x203f3fe0 = 0); NONFAILING(*(uint16_t*)0x203f3fe1 = htobe16(0x800)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x203f3fe3, 5, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x203f3fe3, 4, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x203f3fe4, 0, 0, 2)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x203f3fe4, 0, 2, 6)); NONFAILING(*(uint16_t*)0x203f3fe5 = htobe16(0x1c)); NONFAILING(*(uint16_t*)0x203f3fe7 = htobe16(0)); NONFAILING(*(uint16_t*)0x203f3fe9 = htobe16(0xe000)); NONFAILING(*(uint8_t*)0x203f3feb = 0); NONFAILING(*(uint8_t*)0x203f3fec = 0x11); NONFAILING(*(uint16_t*)0x203f3fed = htobe16(0)); NONFAILING(*(uint32_t*)0x203f3fef = htobe32(0)); NONFAILING(*(uint32_t*)0x203f3ff3 = htobe32(0xe0000001)); NONFAILING(*(uint16_t*)0x203f3ff7 = htobe16(0)); NONFAILING(*(uint16_t*)0x203f3ff9 = htobe16(0)); NONFAILING(*(uint16_t*)0x203f3ffb = htobe16(8)); NONFAILING(*(uint16_t*)0x203f3ffd = htobe16(0)); struct csum_inet csum_1; csum_inet_init(&csum_1); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x0, 4)); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x0, 4)); uint16_t csum_1_chunk_2 = 0x1100; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 2); uint16_t csum_1_chunk_3 = 0x800; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 2); NONFAILING(csum_inet_update(&csum_1, (const uint8_t*)0x0, 8)); NONFAILING(*(uint16_t*)0x203f3ffd = csum_inet_digest(&csum_1)); struct csum_inet csum_2; csum_inet_init(&csum_2); NONFAILING(csum_inet_update(&csum_2, (const uint8_t*)0x203f3fe3, 20)); NONFAILING(*(uint16_t*)0x203f3fed = csum_inet_digest(&csum_2)); syz_emit_ethernet(0x2a, 0x203f3fd5, 0); } int main(void) { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); install_segv_handler(); do_sandbox_none(); return 0; }