// https://syzkaller.appspot.com/bug?id=586978cd872c8997dfa7fb34f824195237637e59 // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } #include #include #include #include #include const int kFailStatus = 67; const int kRetryStatus = 69; static void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } #define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1) #define BITMASK_LEN_OFF(type, bf_off, bf_len) \ (type)(BITMASK_LEN(type, (bf_len)) << (bf_off)) #define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \ if ((bf_off) == 0 && (bf_len) == 0) { \ *(type*)(addr) = (type)(val); \ } else { \ type new_val = *(type*)(addr); \ new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \ new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \ *(type*)(addr) = new_val; \ } static uint64_t current_time_ms() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) fail("clock_gettime failed"); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 8 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid < 0) fail("sandbox fork failed"); if (pid) return pid; sandbox_common(); if (unshare(CLONE_NEWNET)) { } loop(); doexit(1); } #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(%d, SOCK_STREAM, IPPROTO_TCP)", family); for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(IPT_SO_GET_INFO)"); } if (table->info.size > sizeof(table->replace.entrytable)) fail("table size is too large: %u", table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("too many counters: %u", table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(IPT_SO_GET_ENTRIES)"); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(%d, SOCK_STREAM, IPPROTO_TCP)", family); for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) fail("getsockopt(IPT_SO_GET_INFO)"); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(IPT_SO_GET_ENTRIES)"); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) fail("setsockopt(IPT_SO_SET_REPLACE)"); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(ARPT_SO_GET_INFO)"); } if (table->info.size > sizeof(table->replace.entrytable)) fail("table size is too large: %u", table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("too many counters: %u", table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(ARPT_SO_GET_ENTRIES)"); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) fail("getsockopt(ARPT_SO_GET_INFO)"); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(ARPT_SO_GET_ENTRIES)"); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) fail("setsockopt(ARPT_SO_SET_REPLACE)"); } close(fd); } #include #include struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(EBT_SO_GET_INIT_INFO)"); } if (table->replace.entries_size > sizeof(table->entrytable)) fail("table size is too large: %u", table->replace.entries_size); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) fail("getsockopt(EBT_SO_GET_INIT_ENTRIES)"); } close(fd); } static void reset_ebtables() { struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; socklen_t optlen; unsigned i, j, h; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) fail("getsockopt(EBT_SO_GET_INFO)"); replace.num_counters = 0; table->replace.entries = 0; for (h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) fail("getsockopt(EBT_SO_GET_ENTRIES)"); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) fail("setsockopt(EBT_SO_SET_ENTRIES)"); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void execute_one(); extern unsigned long long procid; static void loop() { checkpoint_net_namespace(); int iter; for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) fail("clone failed"); if (pid == 0) { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); execute_one(); doexit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { int res = waitpid(-1, &status, __WALL | WNOHANG); if (res == pid) { break; } usleep(1000); if (current_time_ms() - start < 3 * 1000) continue; kill(-pid, SIGKILL); kill(pid, SIGKILL); while (waitpid(-1, &status, __WALL) != pid) { } break; } reset_net_namespace(); } } struct thread_t { int created, running, call; pthread_t th; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); } return 0; } static void execute(int num_calls) { int call, thread; running = 0; for (call = 0; call < num_calls; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); pthread_create(&th->th, &attr, thr, th); } if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) { th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 20 * 1000 * 1000; syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts); if (running) usleep((call == num_calls - 1) ? 10000 : 1000); break; } } } } uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; unsigned long long procid; void execute_call(int call) { long res; switch (call) { case 0: res = syscall(__NR_socket, 0xa, 2, 0); if (res != -1) r[0] = res; break; case 1: *(uint32_t*)0x20940000 = 2; *(uint32_t*)0x20940004 = 0x78; *(uint8_t*)0x20940008 = 0xfd; *(uint8_t*)0x20940009 = 0; *(uint8_t*)0x2094000a = 0; *(uint8_t*)0x2094000b = 0; *(uint32_t*)0x2094000c = 0; *(uint64_t*)0x20940010 = 0; *(uint64_t*)0x20940018 = 0; *(uint64_t*)0x20940020 = 0; STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 0, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 1, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 2, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 3, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 4, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 3, 5, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 6, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 7, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 8, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 9, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 10, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 11, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 12, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 13, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 14, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 15, 2); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 17, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 18, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 19, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 20, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 21, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 22, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 23, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 24, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 25, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 26, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 27, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 28, 1); STORE_BY_BITMASK(uint64_t, 0x20940028, 0, 29, 35); *(uint32_t*)0x20940030 = 0; *(uint32_t*)0x20940034 = 0; *(uint64_t*)0x20940038 = 0x20000000; *(uint64_t*)0x20940040 = 0; *(uint64_t*)0x20940048 = 0; *(uint64_t*)0x20940050 = 0; *(uint32_t*)0x20940058 = 0; *(uint32_t*)0x2094005c = 0; *(uint64_t*)0x20940060 = 0; *(uint32_t*)0x20940068 = 0; *(uint16_t*)0x2094006c = 0; *(uint16_t*)0x2094006e = 0; res = syscall(__NR_perf_event_open, 0x20940000, 0, 0, -1, 0); if (res != -1) r[1] = res; break; case 2: res = syscall(__NR_fcntl, r[0], 0, r[1]); if (res != -1) r[2] = res; break; case 3: *(uint32_t*)0x20000100 = 2; memcpy((void*)0x20000104, "\x6c\x6f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16); *(uint32_t*)0x20000114 = 0; syscall(__NR_setsockopt, r[2], 0, 0x48b, 0x20000100, 0x18); break; case 4: *(uint32_t*)0x20000500 = 2; memcpy((void*)0x20000504, "\x69\x70\x64\x64\x70\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16); *(uint32_t*)0x20000514 = 0; syscall(__NR_setsockopt, r[2], 0, 0x48c, 0x20000500, 0x18); break; case 5: *(uint32_t*)0x20000040 = 0; *(uint32_t*)0x20000044 = 0; *(uint32_t*)0x20000080 = 8; syscall(__NR_getsockopt, -1, 0x84, 0x13, 0x20000040, 0x20000080); break; case 6: *(uint16_t*)0x20000140 = 2; *(uint16_t*)0x20000142 = htobe16(0x4e21); *(uint32_t*)0x20000144 = htobe32(0xe0000001); *(uint8_t*)0x20000148 = 0; *(uint8_t*)0x20000149 = 0; *(uint8_t*)0x2000014a = 0; *(uint8_t*)0x2000014b = 0; *(uint8_t*)0x2000014c = 0; *(uint8_t*)0x2000014d = 0; *(uint8_t*)0x2000014e = 0; *(uint8_t*)0x2000014f = 0; *(uint16_t*)0x20000150 = 0xa; *(uint16_t*)0x20000152 = htobe16(0x4e24); *(uint32_t*)0x20000154 = 1; *(uint8_t*)0x20000158 = -1; *(uint8_t*)0x20000159 = 1; *(uint8_t*)0x2000015a = 0; *(uint8_t*)0x2000015b = 0; *(uint8_t*)0x2000015c = 0; *(uint8_t*)0x2000015d = 0; *(uint8_t*)0x2000015e = 0; *(uint8_t*)0x2000015f = 0; *(uint8_t*)0x20000160 = 0; *(uint8_t*)0x20000161 = 0; *(uint8_t*)0x20000162 = 0; *(uint8_t*)0x20000163 = 0; *(uint8_t*)0x20000164 = 0; *(uint8_t*)0x20000165 = 0; *(uint8_t*)0x20000166 = 0; *(uint8_t*)0x20000167 = 1; *(uint32_t*)0x20000168 = 4; *(uint16_t*)0x2000016c = 2; *(uint16_t*)0x2000016e = htobe16(0x4e21); *(uint32_t*)0x20000170 = htobe32(0xe0000001); *(uint8_t*)0x20000174 = 0; *(uint8_t*)0x20000175 = 0; *(uint8_t*)0x20000176 = 0; *(uint8_t*)0x20000177 = 0; *(uint8_t*)0x20000178 = 0; *(uint8_t*)0x20000179 = 0; *(uint8_t*)0x2000017a = 0; *(uint8_t*)0x2000017b = 0; *(uint16_t*)0x2000017c = 2; *(uint16_t*)0x2000017e = htobe16(0x4e22); *(uint32_t*)0x20000180 = htobe32(0xe0000001); *(uint8_t*)0x20000184 = 0; *(uint8_t*)0x20000185 = 0; *(uint8_t*)0x20000186 = 0; *(uint8_t*)0x20000187 = 0; *(uint8_t*)0x20000188 = 0; *(uint8_t*)0x20000189 = 0; *(uint8_t*)0x2000018a = 0; *(uint8_t*)0x2000018b = 0; *(uint16_t*)0x2000018c = 0xa; *(uint16_t*)0x2000018e = htobe16(0x4e22); *(uint32_t*)0x20000190 = 0x48d55d1d; *(uint8_t*)0x20000194 = 0xfe; *(uint8_t*)0x20000195 = 0x80; *(uint8_t*)0x20000196 = 0; *(uint8_t*)0x20000197 = 0; *(uint8_t*)0x20000198 = 0; *(uint8_t*)0x20000199 = 0; *(uint8_t*)0x2000019a = 0; *(uint8_t*)0x2000019b = 0; *(uint8_t*)0x2000019c = 0; *(uint8_t*)0x2000019d = 0; *(uint8_t*)0x2000019e = 0; *(uint8_t*)0x2000019f = 0; *(uint8_t*)0x200001a0 = 0; *(uint8_t*)0x200001a1 = 0; *(uint8_t*)0x200001a2 = 0; *(uint8_t*)0x200001a3 = 0xbb; *(uint32_t*)0x200001a4 = 5; syscall(__NR_setsockopt, r[2], 0x84, 0x6e, 0x20000140, 0x68); break; } } void execute_one() { execute(7); } int main() { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); for (procid = 0; procid < 8; procid++) { if (fork() == 0) { for (;;) { int pid = do_sandbox_none(); int status = 0; while (waitpid(pid, &status, __WALL) != pid) { } } } } sleep(1000000); return 0; }