// https://syzkaller.appspot.com/bug?id=03cac969e671adbca500f9737d1a8656c37c24a4 // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } #include #include #include #include #include const int kFailStatus = 67; const int kRetryStatus = 69; static void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } #define BITMASK_LEN(type, bf_len) (type)((1ull << (bf_len)) - 1) #define BITMASK_LEN_OFF(type, bf_off, bf_len) \ (type)(BITMASK_LEN(type, (bf_len)) << (bf_off)) #define STORE_BY_BITMASK(type, addr, val, bf_off, bf_len) \ if ((bf_off) == 0 && (bf_len) == 0) { \ *(type*)(addr) = (type)(val); \ } else { \ type new_val = *(type*)(addr); \ new_val &= ~BITMASK_LEN_OFF(type, (bf_off), (bf_len)); \ new_val |= ((type)(val)&BITMASK_LEN(type, (bf_len))) << (bf_off); \ *(type*)(addr) = new_val; \ } struct csum_inet { uint32_t acc; }; static void csum_inet_init(struct csum_inet* csum) { csum->acc = 0; } static void csum_inet_update(struct csum_inet* csum, const uint8_t* data, size_t length) { if (length == 0) return; size_t i; for (i = 0; i < length - 1; i += 2) csum->acc += *(uint16_t*)&data[i]; if (length & 1) csum->acc += (uint16_t)data[length - 1]; while (csum->acc > 0xffff) csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16); } static uint16_t csum_inet_digest(struct csum_inet* csum) { return ~csum->acc; } static uint64_t current_time_ms() { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) fail("clock_gettime failed"); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void vsnprintf_check(char* str, size_t size, const char* format, va_list args) { int rv; rv = vsnprintf(str, size, format, args); if (rv < 0) fail("tun: snprintf failed"); if ((size_t)rv >= size) fail("tun: string '%s...' doesn't fit into buffer", str); } static void snprintf_check(char* str, size_t size, const char* format, ...) { va_list args; va_start(args, format); vsnprintf_check(str, size, format, args); va_end(args); } #define COMMAND_MAX_LEN 128 #define PATH_PREFIX \ "PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin " #define PATH_PREFIX_LEN (sizeof(PATH_PREFIX) - 1) static void execute_command(bool panic, const char* format, ...) { va_list args; char command[PATH_PREFIX_LEN + COMMAND_MAX_LEN]; int rv; va_start(args, format); memcpy(command, PATH_PREFIX, PATH_PREFIX_LEN); vsnprintf_check(command + PATH_PREFIX_LEN, COMMAND_MAX_LEN, format, args); rv = system(command); if (panic && rv != 0) fail("tun: command \"%s\" failed with code %d", &command[0], rv); va_end(args); } static int tunfd = -1; static int tun_frags_enabled; #define SYZ_TUN_MAX_PACKET_SIZE 1000 #define TUN_IFACE "syz_tun" #define LOCAL_MAC "aa:aa:aa:aa:aa:aa" #define REMOTE_MAC "aa:aa:aa:aa:aa:bb" #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 #define IFF_NAPI_FRAGS 0x0020 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 252; if (dup2(tunfd, kTunFd) < 0) fail("dup2(tunfd, kTunFd) failed"); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) fail("tun: ioctl(TUNSETIFF) failed"); } if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) fail("tun: ioctl(TUNGETIFF) failed"); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; execute_command(1, "sysctl -w net.ipv6.conf.%s.accept_dad=0", TUN_IFACE); execute_command(1, "sysctl -w net.ipv6.conf.%s.router_solicitations=0", TUN_IFACE); execute_command(1, "ip link set dev %s address %s", TUN_IFACE, LOCAL_MAC); execute_command(1, "ip addr add %s/24 dev %s", LOCAL_IPV4, TUN_IFACE); execute_command(1, "ip -6 addr add %s/120 dev %s", LOCAL_IPV6, TUN_IFACE); execute_command(1, "ip neigh add %s lladdr %s dev %s nud permanent", REMOTE_IPV4, REMOTE_MAC, TUN_IFACE); execute_command(1, "ip -6 neigh add %s lladdr %s dev %s nud permanent", REMOTE_IPV6, REMOTE_MAC, TUN_IFACE); execute_command(1, "ip link set dev %s up", TUN_IFACE); } #define DEV_IPV4 "172.20.20.%d" #define DEV_IPV6 "fe80::%02hx" #define DEV_MAC "aa:aa:aa:aa:aa:%02hx" static void initialize_netdevices(void) { unsigned i; const char* devtypes[] = {"ip6gretap", "bridge", "vcan", "bond", "veth"}; const char* devnames[] = {"lo", "sit0", "bridge0", "vcan0", "tunl0", "gre0", "gretap0", "ip_vti0", "ip6_vti0", "ip6tnl0", "ip6gre0", "ip6gretap0", "erspan0", "bond0", "veth0", "veth1"}; for (i = 0; i < sizeof(devtypes) / (sizeof(devtypes[0])); i++) execute_command(0, "ip link add dev %s0 type %s", devtypes[i], devtypes[i]); execute_command(0, "ip link add dev veth1 type veth"); for (i = 0; i < sizeof(devnames) / (sizeof(devnames[0])); i++) { char addr[32]; snprintf_check(addr, sizeof(addr), DEV_IPV4, i + 10); execute_command(0, "ip -4 addr add %s/24 dev %s", addr, devnames[i]); snprintf_check(addr, sizeof(addr), DEV_IPV6, i + 10); execute_command(0, "ip -6 addr add %s/120 dev %s", addr, devnames[i]); snprintf_check(addr, sizeof(addr), DEV_MAC, i + 10); execute_command(0, "ip link set dev %s address %s", devnames[i], addr); execute_command(0, "ip link set dev %s up", devnames[i]); } } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN) return -1; if (errno == EBADFD) return -1; fail("tun: read failed with %d", rv); } return rv; } #define MAX_FRAGS 4 struct vnet_fragmentation { uint32_t full; uint32_t count; uint32_t frags[MAX_FRAGS]; }; static uintptr_t syz_emit_ethernet(uintptr_t a0, uintptr_t a1, uintptr_t a2) { if (tunfd < 0) return (uintptr_t)-1; uint32_t length = a0; char* data = (char*)a1; struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2; struct iovec vecs[MAX_FRAGS + 1]; uint32_t nfrags = 0; if (!tun_frags_enabled || frags == NULL) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } else { bool full = true; uint32_t i, count = 0; full = frags->full; count = frags->count; if (count > MAX_FRAGS) count = MAX_FRAGS; for (i = 0; i < count && length != 0; i++) { uint32_t size = 0; size = frags->frags[i]; if (size > length) size = length; vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = size; nfrags++; data += size; length -= size; } if (length != 0 && (full || nfrags == 0)) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } } return writev(tunfd, vecs, nfrags); } static void flush_tun() { char data[SYZ_TUN_MAX_PACKET_SIZE]; while (read_tun(&data[0], sizeof(data)) != -1) ; } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 8 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); #define CLONE_NEWCGROUP 0x02000000 if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(CLONE_NEWCGROUP)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid < 0) fail("sandbox fork failed"); if (pid) return pid; sandbox_common(); if (unshare(CLONE_NEWNET)) { } initialize_tun(); initialize_netdevices(); loop(); doexit(1); } #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(%d, SOCK_STREAM, IPPROTO_TCP)", family); for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(IPT_SO_GET_INFO)"); } if (table->info.size > sizeof(table->replace.entrytable)) fail("table size is too large: %u", table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("too many counters: %u", table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(IPT_SO_GET_ENTRIES)"); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(%d, SOCK_STREAM, IPPROTO_TCP)", family); for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) fail("getsockopt(IPT_SO_GET_INFO)"); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(IPT_SO_GET_ENTRIES)"); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) fail("setsockopt(IPT_SO_SET_REPLACE)"); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(ARPT_SO_GET_INFO)"); } if (table->info.size > sizeof(table->replace.entrytable)) fail("table size is too large: %u", table->info.size); if (table->info.num_entries > XT_MAX_ENTRIES) fail("too many counters: %u", table->info.num_entries); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(ARPT_SO_GET_ENTRIES)"); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) fail("getsockopt(ARPT_SO_GET_INFO)"); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) fail("getsockopt(ARPT_SO_GET_ENTRIES)"); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) fail("setsockopt(ARPT_SO_SET_REPLACE)"); } close(fd); } #include #include struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } fail("getsockopt(EBT_SO_GET_INIT_INFO)"); } if (table->replace.entries_size > sizeof(table->entrytable)) fail("table size is too large: %u", table->replace.entries_size); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) fail("getsockopt(EBT_SO_GET_INIT_ENTRIES)"); } close(fd); } static void reset_ebtables() { struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; socklen_t optlen; unsigned i, j, h; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) fail("socket(AF_INET, SOCK_STREAM, IPPROTO_TCP)"); for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) fail("getsockopt(EBT_SO_GET_INFO)"); replace.num_counters = 0; table->replace.entries = 0; for (h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) fail("getsockopt(EBT_SO_GET_ENTRIES)"); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) fail("setsockopt(EBT_SO_SET_ENTRIES)"); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void execute_one(); extern unsigned long long procid; static void loop() { checkpoint_net_namespace(); int iter; for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) fail("clone failed"); if (pid == 0) { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); flush_tun(); execute_one(); doexit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { int res = waitpid(-1, &status, __WALL | WNOHANG); if (res == pid) { break; } usleep(1000); if (current_time_ms() - start < 3 * 1000) continue; kill(-pid, SIGKILL); kill(pid, SIGKILL); while (waitpid(-1, &status, __WALL) != pid) { } break; } reset_net_namespace(); } } struct thread_t { int created, running, call; pthread_t th; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); } return 0; } static void execute(int num_calls) { int call, thread; running = 0; for (call = 0; call < num_calls; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); pthread_create(&th->th, &attr, thr, th); } if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) { th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 20 * 1000 * 1000; syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts); if (running) usleep((call == num_calls - 1) ? 10000 : 1000); break; } } } } uint64_t r[1] = {0xffffffffffffffff}; unsigned long long procid; void execute_call(int call) { long res; switch (call) { case 0: *(uint32_t*)0x20000480 = 0; *(uint16_t*)0x20000488 = 2; *(uint16_t*)0x2000048a = htobe16(0x4e22); *(uint8_t*)0x2000048c = 0xac; *(uint8_t*)0x2000048d = 0x14; *(uint8_t*)0x2000048e = 0x14; *(uint8_t*)0x2000048f = 0x10; *(uint8_t*)0x20000490 = 0; *(uint8_t*)0x20000491 = 0; *(uint8_t*)0x20000492 = 0; *(uint8_t*)0x20000493 = 0; *(uint8_t*)0x20000494 = 0; *(uint8_t*)0x20000495 = 0; *(uint8_t*)0x20000496 = 0; *(uint8_t*)0x20000497 = 0; *(uint16_t*)0x20000508 = 1; *(uint16_t*)0x2000050a = 0x7ff; syscall(__NR_setsockopt, -1, 0x84, 0x1f, 0x20000480, 0x90); break; case 1: *(uint8_t*)0x20000080 = 0xaa; *(uint8_t*)0x20000081 = 0xaa; *(uint8_t*)0x20000082 = 0xaa; *(uint8_t*)0x20000083 = 0xaa; *(uint8_t*)0x20000084 = 0xaa; *(uint8_t*)0x20000085 = 0xaa; *(uint8_t*)0x20000086 = 0; *(uint8_t*)0x20000087 = 0; *(uint8_t*)0x20000088 = 0; *(uint8_t*)0x20000089 = 0; *(uint8_t*)0x2000008a = 0; *(uint8_t*)0x2000008b = 0; *(uint16_t*)0x2000008c = htobe16(0x800); STORE_BY_BITMASK(uint8_t, 0x2000008e, 5, 0, 4); STORE_BY_BITMASK(uint8_t, 0x2000008e, 4, 4, 4); STORE_BY_BITMASK(uint8_t, 0x2000008f, 0, 0, 2); STORE_BY_BITMASK(uint8_t, 0x2000008f, 0, 2, 6); *(uint16_t*)0x20000090 = htobe16(0x1c); *(uint16_t*)0x20000092 = htobe16(0); *(uint16_t*)0x20000094 = htobe16(0); *(uint8_t*)0x20000096 = 0; *(uint8_t*)0x20000097 = 0x11; *(uint16_t*)0x20000098 = 0; *(uint8_t*)0x2000009a = 0xac; *(uint8_t*)0x2000009b = 0x23; *(uint8_t*)0x2000009c = 0x14; *(uint8_t*)0x2000009d = 0xaa; *(uint8_t*)0x2000009e = 0xac; *(uint8_t*)0x2000009f = 0x14; *(uint8_t*)0x200000a0 = 0x14; *(uint8_t*)0x200000a1 = 0x2b; *(uint16_t*)0x200000a2 = htobe16(0x4e20); *(uint16_t*)0x200000a4 = htobe16(0x4e20); *(uint16_t*)0x200000a6 = htobe16(8); *(uint16_t*)0x200000a8 = 0; *(uint32_t*)0x200000c0 = 0; *(uint32_t*)0x200000c4 = 0; *(uint32_t*)0x200000c8 = 0; *(uint32_t*)0x200000cc = 0; *(uint32_t*)0x200000d0 = 0; *(uint32_t*)0x200000d4 = 0; struct csum_inet csum_1; csum_inet_init(&csum_1); csum_inet_update(&csum_1, (const uint8_t*)0x2000009a, 4); csum_inet_update(&csum_1, (const uint8_t*)0x2000009e, 4); uint16_t csum_1_chunk_2 = 0x1100; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 2); uint16_t csum_1_chunk_3 = 0x800; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 2); csum_inet_update(&csum_1, (const uint8_t*)0x200000a2, 8); *(uint16_t*)0x200000a8 = csum_inet_digest(&csum_1); struct csum_inet csum_2; csum_inet_init(&csum_2); csum_inet_update(&csum_2, (const uint8_t*)0x2000008e, 20); *(uint16_t*)0x20000098 = csum_inet_digest(&csum_2); syz_emit_ethernet(0x2a, 0x20000080, 0x200000c0); break; case 2: *(uint16_t*)0x20b63fe4 = 0xa; *(uint16_t*)0x20b63fe6 = htobe16(0x4e22); *(uint32_t*)0x20b63fe8 = 0; *(uint8_t*)0x20b63fec = 0; *(uint8_t*)0x20b63fed = 0; *(uint8_t*)0x20b63fee = 0; *(uint8_t*)0x20b63fef = 0; *(uint8_t*)0x20b63ff0 = 0; *(uint8_t*)0x20b63ff1 = 0; *(uint8_t*)0x20b63ff2 = 0; *(uint8_t*)0x20b63ff3 = 0; *(uint8_t*)0x20b63ff4 = 0; *(uint8_t*)0x20b63ff5 = 0; *(uint8_t*)0x20b63ff6 = 0; *(uint8_t*)0x20b63ff7 = 0; *(uint8_t*)0x20b63ff8 = 0; *(uint8_t*)0x20b63ff9 = 0; *(uint8_t*)0x20b63ffa = 0; *(uint8_t*)0x20b63ffb = 0; *(uint32_t*)0x20b63ffc = 0; syscall(__NR_sendto, -1, 0x20f6f000, 0, 0x20000004, 0x20b63fe4, 0x1c); break; case 3: *(uint64_t*)0x20000480 = 0x20000300; *(uint16_t*)0x20000300 = 0x10; *(uint16_t*)0x20000302 = 0; *(uint32_t*)0x20000304 = 0; *(uint32_t*)0x20000308 = 0x20000010; *(uint32_t*)0x20000488 = 0xc; *(uint64_t*)0x20000490 = 0x20000440; *(uint64_t*)0x20000440 = 0x20000340; *(uint32_t*)0x20000340 = 0xc8; *(uint16_t*)0x20000344 = 0; *(uint16_t*)0x20000346 = 0x10; *(uint32_t*)0x20000348 = 0x70bd2d; *(uint32_t*)0x2000034c = 0x25dfdbfb; *(uint8_t*)0x20000350 = 0xf; *(uint8_t*)0x20000351 = 0; *(uint16_t*)0x20000352 = 0; *(uint16_t*)0x20000354 = 0xc; *(uint16_t*)0x20000356 = 2; *(uint16_t*)0x20000358 = 8; *(uint16_t*)0x2000035a = 6; *(uint32_t*)0x2000035c = 0x200; *(uint16_t*)0x20000360 = 8; *(uint16_t*)0x20000362 = 6; *(uint32_t*)0x20000364 = 1; *(uint16_t*)0x20000368 = 0xc; *(uint16_t*)0x2000036a = 3; *(uint16_t*)0x2000036c = 8; *(uint16_t*)0x2000036e = 4; *(uint16_t*)0x20000370 = 4; *(uint16_t*)0x20000374 = 0x50; *(uint16_t*)0x20000376 = 3; *(uint16_t*)0x20000378 = 8; *(uint16_t*)0x2000037a = 3; *(uint32_t*)0x2000037c = 1; *(uint16_t*)0x20000380 = 8; *(uint16_t*)0x20000382 = 1; *(uint32_t*)0x20000384 = 1; *(uint16_t*)0x20000388 = 8; *(uint16_t*)0x2000038a = 1; *(uint32_t*)0x2000038c = 1; *(uint16_t*)0x20000390 = 8; *(uint16_t*)0x20000392 = 5; *(uint8_t*)0x20000394 = 0xac; *(uint8_t*)0x20000395 = 0x14; *(uint8_t*)0x20000396 = 0x14; *(uint8_t*)0x20000397 = 0xbb; *(uint16_t*)0x20000398 = 0x14; *(uint16_t*)0x2000039a = 6; *(uint8_t*)0x2000039c = -1; *(uint8_t*)0x2000039d = 1; *(uint8_t*)0x2000039e = 0; *(uint8_t*)0x2000039f = 0; *(uint8_t*)0x200003a0 = 0; *(uint8_t*)0x200003a1 = 0; *(uint8_t*)0x200003a2 = 0; *(uint8_t*)0x200003a3 = 0; *(uint8_t*)0x200003a4 = 0; *(uint8_t*)0x200003a5 = 0; *(uint8_t*)0x200003a6 = 0; *(uint8_t*)0x200003a7 = 0; *(uint8_t*)0x200003a8 = 0; *(uint8_t*)0x200003a9 = 0; *(uint8_t*)0x200003aa = 0; *(uint8_t*)0x200003ab = 1; *(uint16_t*)0x200003ac = 8; *(uint16_t*)0x200003ae = 4; *(uint16_t*)0x200003b0 = 0; *(uint16_t*)0x200003b4 = 8; *(uint16_t*)0x200003b6 = 7; *(uint16_t*)0x200003b8 = htobe16(0x4e24); *(uint16_t*)0x200003bc = 8; *(uint16_t*)0x200003be = 1; *(uint32_t*)0x200003c0 = 0; *(uint16_t*)0x200003c4 = 8; *(uint16_t*)0x200003c6 = 5; *(uint32_t*)0x200003c8 = 1; *(uint16_t*)0x200003cc = 0x3c; *(uint16_t*)0x200003ce = 3; *(uint16_t*)0x200003d0 = 8; *(uint16_t*)0x200003d2 = 7; *(uint16_t*)0x200003d4 = htobe16(0x4e20); *(uint16_t*)0x200003d8 = 8; *(uint16_t*)0x200003da = 1; *(uint32_t*)0x200003dc = 1; *(uint16_t*)0x200003e0 = 8; *(uint16_t*)0x200003e2 = 3; *(uint32_t*)0x200003e4 = 1; *(uint16_t*)0x200003e8 = 8; *(uint16_t*)0x200003ea = 8; *(uint8_t*)0x200003ec = 9; *(uint16_t*)0x200003f0 = 8; *(uint16_t*)0x200003f2 = 4; *(uint16_t*)0x200003f4 = 8; *(uint16_t*)0x200003f8 = 8; *(uint16_t*)0x200003fa = 4; *(uint16_t*)0x200003fc = 4; *(uint16_t*)0x20000400 = 8; *(uint16_t*)0x20000402 = 8; *(uint8_t*)0x20000404 = 0xdd; *(uint64_t*)0x20000448 = 0xc8; *(uint64_t*)0x20000498 = 1; *(uint64_t*)0x200004a0 = 0; *(uint64_t*)0x200004a8 = 0; *(uint32_t*)0x200004b0 = 0x80; syscall(__NR_sendmsg, -1, 0x20000480, 0); break; case 4: *(uint64_t*)0x20014000 = 0; *(uint32_t*)0x20014008 = 0; *(uint64_t*)0x20014010 = 0x20000000; *(uint64_t*)0x20000000 = 0x20008000; memcpy((void*)0x20008000, "\x4c\x00\x00\x00\x12\x00\xff\x09\xff\xfe\xfd\x95\x6f\xa2\x83\x00" "\x07\xa6\x00\x80\x00\x00\x00\x00\x00\x00\x00\x68\x35\x40\x15\x00" "\x24\x00\x1d\x00\x04\xc4\x11\x80\xb5\x98\xbc\x59\x3a\xb6\x82\x11" "\x48\xa7\x30\xde\x33\xa4\x98\x68\xc6\x2b\x2c\xa6\x54\xa6\x61\x3b" "\x6a\xab\xf3\x5d\x4c\x1c\xbc\x88\x2b\x07\x98\x81", 76); *(uint64_t*)0x20000008 = 0x4c; *(uint64_t*)0x20014018 = 1; *(uint64_t*)0x20014020 = 0; *(uint64_t*)0x20014028 = 0; *(uint32_t*)0x20014030 = 0; syscall(__NR_sendmsg, -1, 0x20014000, 0); break; case 5: res = syscall(__NR_socket, 2, 3, 2); if (res != -1) r[0] = res; break; case 6: *(uint32_t*)0x20000100 = 2; memcpy((void*)0x20000104, "\x76\x63\x61\x6e\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16); *(uint32_t*)0x20000114 = 3; syscall(__NR_setsockopt, r[0], 0, 0x48b, 0x20000100, 0x18); break; case 7: *(uint32_t*)0x20000240 = 2; memcpy((void*)0x20000244, "\x69\x66\x62\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16); *(uint32_t*)0x20000254 = 0; syscall(__NR_setsockopt, r[0], 0, 0x48c, 0x20000240, 0x18); break; } } void execute_one() { execute(8); } int main() { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); for (procid = 0; procid < 8; procid++) { if (fork() == 0) { for (;;) { int pid = do_sandbox_none(); int status = 0; while (waitpid(pid, &status, __WALL) != pid) { } } } } sleep(1000000); return 0; }