// https://syzkaller.appspot.com/bug?id=3cd92b1d85428b128503bfa7a250294c9ae00bd8 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned long long procid; static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } static struct { char* pos; int nesting; struct nlattr* nested[8]; char buf[1024]; } nlmsg; static void netlink_init(int typ, int flags, const void* data, int size) { memset(&nlmsg, 0, sizeof(nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg.pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg.pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; memcpy(attr + 1, data, size); nlmsg.pos += NLMSG_ALIGN(attr->nla_len); } static int netlink_send(int sock) { if (nlmsg.pos > nlmsg.buf + sizeof(nlmsg.buf) || nlmsg.nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg.buf; hdr->nlmsg_len = nlmsg.pos - nlmsg.buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; unsigned n = sendto(sock, nlmsg.buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != hdr->nlmsg_len) exit(1); n = recv(sock, nlmsg.buf, sizeof(nlmsg.buf), 0); if (n < sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr)) exit(1); if (hdr->nlmsg_type != NLMSG_ERROR) exit(1); return -((struct nlmsgerr*)(hdr + 1))->error; } static void netlink_device_change(int sock, const char* name, bool up, const char* master, const void* mac, int macsize) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; netlink_init(RTM_NEWLINK, 0, &hdr, sizeof(hdr)); netlink_attr(IFLA_IFNAME, name, strlen(name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(IFLA_ADDRESS, mac, macsize); int err = netlink_send(sock); (void)err; } static int netlink_add_addr(int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(IFA_LOCAL, addr, addrsize); netlink_attr(IFA_ADDRESS, addr, addrsize); return netlink_send(sock); } static void netlink_add_addr4(int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(sock, dev, &in_addr, sizeof(in_addr)); (void)err; } static void netlink_add_addr6(int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(sock, dev, &in6_addr, sizeof(in6_addr)); (void)err; } static void netlink_add_neigh(int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(NDA_DST, addr, addrsize); netlink_attr(NDA_LLADDR, mac, macsize); int err = netlink_send(sock); (void)err; } static int tunfd = -1; static int tun_frags_enabled; #define SYZ_TUN_MAX_PACKET_SIZE 1000 #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 #define IFF_NAPI_FRAGS 0x0020 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) exit(1); } if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) exit(1); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN); close(sock); } #define MAX_FDS 30 #define USB_DEBUG 0 #define USB_MAX_IFACE_NUM 4 #define USB_MAX_EP_NUM 32 struct usb_iface_index { struct usb_interface_descriptor* iface; uint8_t bInterfaceNumber; uint8_t bAlternateSetting; struct usb_endpoint_descriptor eps[USB_MAX_EP_NUM]; int eps_num; }; struct usb_device_index { struct usb_device_descriptor* dev; struct usb_config_descriptor* config; uint8_t bMaxPower; int config_length; struct usb_iface_index ifaces[USB_MAX_IFACE_NUM]; int ifaces_num; int iface_cur; }; static bool parse_usb_descriptor(char* buffer, size_t length, struct usb_device_index* index) { if (length < sizeof(*index->dev) + sizeof(*index->config)) return false; memset(index, 0, sizeof(*index)); index->dev = (struct usb_device_descriptor*)buffer; index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev)); index->bMaxPower = index->config->bMaxPower; index->config_length = length - sizeof(*index->dev); index->iface_cur = -1; size_t offset = 0; while (true) { if (offset + 1 >= length) break; uint8_t desc_length = buffer[offset]; uint8_t desc_type = buffer[offset + 1]; if (desc_length <= 2) break; if (offset + desc_length > length) break; if (desc_type == USB_DT_INTERFACE && index->ifaces_num < USB_MAX_IFACE_NUM) { struct usb_interface_descriptor* iface = (struct usb_interface_descriptor*)(buffer + offset); index->ifaces[index->ifaces_num].iface = iface; index->ifaces[index->ifaces_num].bInterfaceNumber = iface->bInterfaceNumber; index->ifaces[index->ifaces_num].bAlternateSetting = iface->bAlternateSetting; index->ifaces_num++; } if (desc_type == USB_DT_ENDPOINT && index->ifaces_num > 0) { struct usb_iface_index* iface = &index->ifaces[index->ifaces_num - 1]; if (iface->eps_num < USB_MAX_EP_NUM) { memcpy(&iface->eps[iface->eps_num], buffer + offset, sizeof(iface->eps[iface->eps_num])); iface->eps_num++; } } offset += desc_length; } return true; } enum usb_fuzzer_event_type { USB_FUZZER_EVENT_INVALID, USB_FUZZER_EVENT_CONNECT, USB_FUZZER_EVENT_DISCONNECT, USB_FUZZER_EVENT_SUSPEND, USB_FUZZER_EVENT_RESUME, USB_FUZZER_EVENT_CONTROL, }; struct usb_fuzzer_event { uint32_t type; uint32_t length; char data[0]; }; struct usb_fuzzer_init { uint64_t speed; const char* driver_name; const char* device_name; }; struct usb_fuzzer_ep_io { uint16_t ep; uint16_t flags; uint32_t length; char data[0]; }; #define USB_FUZZER_IOCTL_INIT _IOW('U', 0, struct usb_fuzzer_init) #define USB_FUZZER_IOCTL_RUN _IO('U', 1) #define USB_FUZZER_IOCTL_EVENT_FETCH _IOR('U', 2, struct usb_fuzzer_event) #define USB_FUZZER_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_fuzzer_ep_io) #define USB_FUZZER_IOCTL_EP0_READ _IOWR('U', 4, struct usb_fuzzer_ep_io) #define USB_FUZZER_IOCTL_EP_ENABLE _IOW('U', 5, struct usb_endpoint_descriptor) #define USB_FUZZER_IOCTL_EP_DISABLE _IOW('U', 6, int) #define USB_FUZZER_IOCTL_EP_WRITE _IOW('U', 7, struct usb_fuzzer_ep_io) #define USB_FUZZER_IOCTL_EP_READ _IOWR('U', 8, struct usb_fuzzer_ep_io) #define USB_FUZZER_IOCTL_CONFIGURE _IO('U', 9) #define USB_FUZZER_IOCTL_VBUS_DRAW _IOW('U', 10, uint32_t) static int usb_fuzzer_open() { return open("/sys/kernel/debug/usb-fuzzer", O_RDWR); } static int usb_fuzzer_init(int fd, uint32_t speed, const char* driver, const char* device) { struct usb_fuzzer_init arg; arg.speed = speed; arg.driver_name = driver; arg.device_name = device; return ioctl(fd, USB_FUZZER_IOCTL_INIT, &arg); } static int usb_fuzzer_run(int fd) { return ioctl(fd, USB_FUZZER_IOCTL_RUN, 0); } static int usb_fuzzer_event_fetch(int fd, struct usb_fuzzer_event* event) { return ioctl(fd, USB_FUZZER_IOCTL_EVENT_FETCH, event); } static int usb_fuzzer_ep0_write(int fd, struct usb_fuzzer_ep_io* io) { return ioctl(fd, USB_FUZZER_IOCTL_EP0_WRITE, io); } static int usb_fuzzer_ep0_read(int fd, struct usb_fuzzer_ep_io* io) { return ioctl(fd, USB_FUZZER_IOCTL_EP0_READ, io); } static int usb_fuzzer_ep_enable(int fd, struct usb_endpoint_descriptor* desc) { return ioctl(fd, USB_FUZZER_IOCTL_EP_ENABLE, desc); } static int usb_fuzzer_ep_disable(int fd, int ep) { return ioctl(fd, USB_FUZZER_IOCTL_EP_DISABLE, ep); } static int usb_fuzzer_configure(int fd) { return ioctl(fd, USB_FUZZER_IOCTL_CONFIGURE, 0); } static int usb_fuzzer_vbus_draw(int fd, uint32_t power) { return ioctl(fd, USB_FUZZER_IOCTL_VBUS_DRAW, power); } #define MAX_USB_FDS 6 struct usb_info { int fd; struct usb_device_index index; }; static struct usb_info usb_devices[MAX_USB_FDS]; static int usb_devices_num; static struct usb_device_index* add_usb_index(int fd, char* dev, size_t dev_len) { int i = __atomic_fetch_add(&usb_devices_num, 1, __ATOMIC_RELAXED); if (i >= MAX_USB_FDS) return NULL; int rv = 0; rv = parse_usb_descriptor(dev, dev_len, &usb_devices[i].index); if (!rv) return NULL; __atomic_store_n(&usb_devices[i].fd, fd, __ATOMIC_RELEASE); return &usb_devices[i].index; } static struct usb_device_index* lookup_usb_index(int fd) { int i; for (i = 0; i < MAX_USB_FDS; i++) { if (__atomic_load_n(&usb_devices[i].fd, __ATOMIC_ACQUIRE) == fd) { return &usb_devices[i].index; } } return NULL; } static void set_interface(int fd, int n) { struct usb_device_index* index = lookup_usb_index(fd); int ep; if (!index) return; if (index->iface_cur >= 0 && index->iface_cur < index->ifaces_num) { for (ep = 0; ep < index->ifaces[index->iface_cur].eps_num; ep++) { int rv = usb_fuzzer_ep_disable(fd, ep); if (rv < 0) { } else { } } } if (n >= 0 && n < index->ifaces_num) { for (ep = 0; ep < index->ifaces[n].eps_num; ep++) { int rv = usb_fuzzer_ep_enable(fd, &index->ifaces[n].eps[ep]); if (rv < 0) { } else { } } index->iface_cur = n; } } static int configure_device(int fd) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; int rv = usb_fuzzer_vbus_draw(fd, index->bMaxPower); if (rv < 0) { return rv; } rv = usb_fuzzer_configure(fd); if (rv < 0) { return rv; } set_interface(fd, 0); return 0; } #define USB_MAX_PACKET_SIZE 1024 struct usb_fuzzer_control_event { struct usb_fuzzer_event inner; struct usb_ctrlrequest ctrl; char data[USB_MAX_PACKET_SIZE]; }; struct usb_fuzzer_ep_io_data { struct usb_fuzzer_ep_io inner; char data[USB_MAX_PACKET_SIZE]; }; struct vusb_connect_string_descriptor { uint32_t len; char* str; } __attribute__((packed)); struct vusb_connect_descriptors { uint32_t qual_len; char* qual; uint32_t bos_len; char* bos; uint32_t strs_len; struct vusb_connect_string_descriptor strs[0]; } __attribute__((packed)); static const char default_string[] = {8, USB_DT_STRING, 's', 0, 'y', 0, 'z', 0}; static const char default_lang_id[] = {4, USB_DT_STRING, 0x09, 0x04}; static bool lookup_connect_response(int fd, struct vusb_connect_descriptors* descs, struct usb_ctrlrequest* ctrl, char** response_data, uint32_t* response_length) { struct usb_device_index* index = lookup_usb_index(fd); uint8_t str_idx; if (!index) return false; switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: switch (ctrl->wValue >> 8) { case USB_DT_DEVICE: *response_data = (char*)index->dev; *response_length = sizeof(*index->dev); return true; case USB_DT_CONFIG: *response_data = (char*)index->config; *response_length = index->config_length; return true; case USB_DT_STRING: str_idx = (uint8_t)ctrl->wValue; if (descs && str_idx < descs->strs_len) { *response_data = descs->strs[str_idx].str; *response_length = descs->strs[str_idx].len; return true; } if (str_idx == 0) { *response_data = (char*)&default_lang_id[0]; *response_length = default_lang_id[0]; return true; } *response_data = (char*)&default_string[0]; *response_length = default_string[0]; return true; case USB_DT_BOS: *response_data = descs->bos; *response_length = descs->bos_len; return true; case USB_DT_DEVICE_QUALIFIER: if (!descs->qual) { struct usb_qualifier_descriptor* qual = (struct usb_qualifier_descriptor*)response_data; qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; qual->bcdUSB = index->dev->bcdUSB; qual->bDeviceClass = index->dev->bDeviceClass; qual->bDeviceSubClass = index->dev->bDeviceSubClass; qual->bDeviceProtocol = index->dev->bDeviceProtocol; qual->bMaxPacketSize0 = index->dev->bMaxPacketSize0; qual->bNumConfigurations = index->dev->bNumConfigurations; qual->bRESERVED = 0; *response_length = sizeof(*qual); return true; } *response_data = descs->qual; *response_length = descs->qual_len; return true; default: exit(1); return false; } break; default: exit(1); return false; } break; default: exit(1); return false; } return false; } static volatile long syz_usb_connect(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { uint64_t speed = a0; uint64_t dev_len = a1; char* dev = (char*)a2; struct vusb_connect_descriptors* descs = (struct vusb_connect_descriptors*)a3; if (!dev) { return -1; } int fd = usb_fuzzer_open(); if (fd < 0) { return fd; } if (fd >= MAX_FDS) { close(fd); return -1; } struct usb_device_index* index = add_usb_index(fd, dev, dev_len); if (!index) { return -1; } char device[32]; sprintf(&device[0], "dummy_udc.%llu", procid); int rv = usb_fuzzer_init(fd, speed, "dummy_udc", &device[0]); if (rv < 0) { return rv; } rv = usb_fuzzer_run(fd); if (rv < 0) { return rv; } bool done = false; while (!done) { struct usb_fuzzer_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); rv = usb_fuzzer_event_fetch(fd, (struct usb_fuzzer_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_FUZZER_EVENT_CONTROL) continue; bool response_found = false; char* response_data = NULL; uint32_t response_length = 0; if (event.ctrl.bRequestType & USB_DIR_IN) { response_found = lookup_connect_response( fd, descs, &event.ctrl, &response_data, &response_length); if (!response_found) { return -1; } } else { if ((event.ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD || event.ctrl.bRequest != USB_REQ_SET_CONFIGURATION) { exit(1); return -1; } done = true; } if (done) { rv = configure_device(fd); if (rv < 0) { return rv; } } struct usb_fuzzer_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if (event.ctrl.bRequestType & USB_DIR_IN) { rv = usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response); } else { rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_ep_io*)&response); } if (rv < 0) { return rv; } } sleep_ms(200); return fd; } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } initialize_tun(); loop(); exit(1); } static void close_fds() { int fd; for (fd = 3; fd < MAX_FDS; fd++) close(fd); } void loop(void) { *(uint8_t*)0x20000000 = 0x12; *(uint8_t*)0x20000001 = 1; *(uint16_t*)0x20000002 = 0; *(uint8_t*)0x20000004 = 0xf7; *(uint8_t*)0x20000005 = 0xcb; *(uint8_t*)0x20000006 = 0x99; *(uint8_t*)0x20000007 = 0x20; *(uint16_t*)0x20000008 = 0x2019; *(uint16_t*)0x2000000a = 0xed18; *(uint16_t*)0x2000000c = 0x940b; *(uint8_t*)0x2000000e = 0; *(uint8_t*)0x2000000f = 0; *(uint8_t*)0x20000010 = 0; *(uint8_t*)0x20000011 = 1; *(uint8_t*)0x20000012 = 9; *(uint8_t*)0x20000013 = 2; *(uint16_t*)0x20000014 = 0x1b; *(uint8_t*)0x20000016 = 1; *(uint8_t*)0x20000017 = -1; *(uint8_t*)0x20000018 = 9; *(uint8_t*)0x20000019 = 8; *(uint8_t*)0x2000001a = 6; *(uint8_t*)0x2000001b = 9; *(uint8_t*)0x2000001c = 4; *(uint8_t*)0x2000001d = 0xc6; *(uint8_t*)0x2000001e = 0; *(uint8_t*)0x2000001f = 1; *(uint8_t*)0x20000020 = 0xc; *(uint8_t*)0x20000021 = -1; *(uint8_t*)0x20000022 = 0xf9; *(uint8_t*)0x20000023 = 0; *(uint8_t*)0x20000024 = 9; *(uint8_t*)0x20000025 = 5; *(uint8_t*)0x20000026 = 1; *(uint8_t*)0x20000027 = 3; *(uint16_t*)0x20000028 = 0x23d; *(uint8_t*)0x2000002a = 0x70; *(uint8_t*)0x2000002b = 0; *(uint8_t*)0x2000002c = 0; syz_usb_connect(0, 0x2d, 0x20000000, 0); close_fds(); } int main(void) { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); use_temporary_dir(); do_sandbox_none(); return 0; }