// https://syzkaller.appspot.com/bug?id=99a60813b9287a6ef4d1583f9208c6584ffde85a // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned long long procid; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i; for (i = 0; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_RELAXED)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[1024]; }; static struct nlmsg nlmsg; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; unsigned n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != hdr->nlmsg_len) exit(1); n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (hdr->nlmsg_type == NLMSG_DONE) { *reply_len = 0; return 0; } if (n < sizeof(struct nlmsghdr)) exit(1); if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr)) exit(1); if (hdr->nlmsg_type != NLMSG_ERROR) exit(1); return -((struct nlmsgerr*)(hdr + 1))->error; } static int netlink_send(struct nlmsg* nlmsg, int sock) { return netlink_send_ext(nlmsg, sock, 0, NULL); } static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up, const char* master, const void* mac, int macsize, const char* new_name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; hdr.ifi_index = if_nametoindex(name); netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr)); if (new_name) netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize); int err = netlink_send(nlmsg, sock); (void)err; } static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize); netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize); return netlink_send(nlmsg, sock); } static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr)); (void)err; } static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr)); (void)err; } static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, NDA_DST, addr, addrsize); netlink_attr(nlmsg, NDA_LLADDR, mac, macsize); int err = netlink_send(nlmsg, sock); (void)err; } static int tunfd = -1; static int tun_frags_enabled; #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 #define IFF_NAPI_FRAGS 0x0020 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 240; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_NAPI | IFF_NAPI_FRAGS; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) exit(1); } if (ioctl(tunfd, TUNGETIFF, (void*)&ifr) < 0) exit(1); tun_frags_enabled = (ifr.ifr_flags & IFF_NAPI_FRAGS) != 0; char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL); close(sock); } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN) return -1; if (errno == EBADFD) return -1; exit(1); } return rv; } #define MAX_FRAGS 4 struct vnet_fragmentation { uint32_t full; uint32_t count; uint32_t frags[MAX_FRAGS]; }; static long syz_emit_ethernet(volatile long a0, volatile long a1, volatile long a2) { if (tunfd < 0) return (uintptr_t)-1; uint32_t length = a0; char* data = (char*)a1; struct vnet_fragmentation* frags = (struct vnet_fragmentation*)a2; struct iovec vecs[MAX_FRAGS + 1]; uint32_t nfrags = 0; if (!tun_frags_enabled || frags == NULL) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } else { bool full = true; uint32_t i, count = 0; NONFAILING(full = frags->full); NONFAILING(count = frags->count); if (count > MAX_FRAGS) count = MAX_FRAGS; for (i = 0; i < count && length != 0; i++) { uint32_t size = 0; NONFAILING(size = frags->frags[i]); if (size > length) size = length; vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = size; nfrags++; data += size; length -= size; } if (length != 0 && (full || nfrags == 0)) { vecs[nfrags].iov_base = data; vecs[nfrags].iov_len = length; nfrags++; } } return writev(tunfd, vecs, nfrags); } static void flush_tun() { char data[1000]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #define MAX_FDS 30 static long syz_genetlink_get_family_id(volatile long name) { char buf[512] = {0}; struct nlmsghdr* hdr = (struct nlmsghdr*)buf; struct genlmsghdr* genlhdr = (struct genlmsghdr*)NLMSG_DATA(hdr); struct nlattr* attr = (struct nlattr*)(genlhdr + 1); hdr->nlmsg_len = sizeof(*hdr) + sizeof(*genlhdr) + sizeof(*attr) + GENL_NAMSIZ; hdr->nlmsg_type = GENL_ID_CTRL; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK; genlhdr->cmd = CTRL_CMD_GETFAMILY; attr->nla_type = CTRL_ATTR_FAMILY_NAME; attr->nla_len = sizeof(*attr) + GENL_NAMSIZ; NONFAILING(strncpy((char*)(attr + 1), (char*)name, GENL_NAMSIZ)); struct iovec iov = {hdr, hdr->nlmsg_len}; struct sockaddr_nl addr = {0}; addr.nl_family = AF_NETLINK; int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (fd == -1) { return -1; } struct msghdr msg = {&addr, sizeof(addr), &iov, 1, NULL, 0, 0}; if (sendmsg(fd, &msg, 0) == -1) { close(fd); return -1; } ssize_t n = recv(fd, buf, sizeof(buf), 0); close(fd); if (n <= 0) { return -1; } if (hdr->nlmsg_type != GENL_ID_CTRL) { return -1; } for (; (char*)attr < buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) return *(uint16_t*)(attr + 1); } return -1; } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } initialize_tun(); loop(); exit(1); } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); flush_tun(); } static void close_fds() { int fd; for (fd = 3; fd < MAX_FDS; fd++) close(fd); } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; for (call = 0; call < 14; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 45); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter; for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5 * 1000) continue; kill_and_wait(pid, &status); break; } } } #ifndef __NR_bpf #define __NR_bpf 321 #endif uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res; switch (call) { case 0: syscall(__NR_socket, 0x10ul, 3ul, 0); break; case 1: NONFAILING(memcpy((void*)0x20000040, "/dev/nvram\000", 11)); res = syscall(__NR_openat, 0xffffffffffffff9cul, 0x20000040ul, 0ul, 0ul); if (res != -1) r[0] = res; break; case 2: syscall(__NR_fchmod, r[0], 0x2a0ul); break; case 3: res = syscall(__NR_socket, 0x10ul, 3ul, 0ul); if (res != -1) r[1] = res; break; case 4: syscall(__NR_socket, 0x200000000000011ul, 3ul, 0); break; case 5: res = syscall(__NR_accept4, -1, 0ul, 0ul, 0x80000ul); if (res != -1) r[2] = res; break; case 6: syscall(__NR_sendmmsg, r[2], 0ul, 0ul, 0x800ul); break; case 7: syscall(__NR_socket, 0x10ul, 3ul, 0x10ul); break; case 8: NONFAILING(*(uint32_t*)0x200004c0 = 1); NONFAILING(*(uint32_t*)0x200004c4 = 5); NONFAILING(*(uint32_t*)0x200004c8 = 0x899); NONFAILING(*(uint32_t*)0x200004cc = 2); NONFAILING(*(uint32_t*)0x200004d0 = 0); NONFAILING(*(uint32_t*)0x200004d4 = -1); NONFAILING(*(uint32_t*)0x200004d8 = 0); NONFAILING(*(uint8_t*)0x200004dc = 0); NONFAILING(*(uint8_t*)0x200004dd = 0); NONFAILING(*(uint8_t*)0x200004de = 0); NONFAILING(*(uint8_t*)0x200004df = 0); NONFAILING(*(uint8_t*)0x200004e0 = 0); NONFAILING(*(uint8_t*)0x200004e1 = 4); NONFAILING(*(uint8_t*)0x200004e2 = 0); NONFAILING(*(uint8_t*)0x200004e3 = 0); NONFAILING(*(uint8_t*)0x200004e4 = 0); NONFAILING(*(uint8_t*)0x200004e5 = 0); NONFAILING(*(uint8_t*)0x200004e6 = 0); NONFAILING(*(uint8_t*)0x200004e7 = 0); NONFAILING(*(uint8_t*)0x200004e8 = 0); NONFAILING(*(uint8_t*)0x200004e9 = 0); NONFAILING(*(uint8_t*)0x200004ea = 0); NONFAILING(*(uint8_t*)0x200004eb = 0); NONFAILING(*(uint32_t*)0x200004ec = 0); NONFAILING(*(uint32_t*)0x200004f0 = -1); NONFAILING(*(uint32_t*)0x200004f4 = 0); NONFAILING(*(uint32_t*)0x200004f8 = 0); syscall(__NR_bpf, 0ul, 0x200004c0ul, 0x3cul); break; case 9: NONFAILING(*(uint32_t*)0x20000180 = 6); NONFAILING(*(uint32_t*)0x20000184 = 4); NONFAILING(*(uint64_t*)0x20000188 = 0x20000200); NONFAILING(*(uint8_t*)0x20000200 = 0x18); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000201, 2, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000201, 0, 4, 4)); NONFAILING(*(uint16_t*)0x20000202 = 0); NONFAILING(*(uint32_t*)0x20000204 = 0); NONFAILING(*(uint8_t*)0x20000208 = 0); NONFAILING(*(uint8_t*)0x20000209 = 0); NONFAILING(*(uint16_t*)0x2000020a = 0); NONFAILING(*(uint32_t*)0x2000020c = 0); NONFAILING(*(uint8_t*)0x20000210 = 0x85); NONFAILING(*(uint8_t*)0x20000211 = 0); NONFAILING(*(uint16_t*)0x20000212 = 0); NONFAILING(*(uint32_t*)0x20000214 = 0x2c); NONFAILING(*(uint8_t*)0x20000218 = 0x95); NONFAILING(*(uint8_t*)0x20000219 = 0); NONFAILING(*(uint16_t*)0x2000021a = 0); NONFAILING(*(uint32_t*)0x2000021c = 0); NONFAILING(*(uint64_t*)0x20000190 = 0x200000c0); NONFAILING(memcpy((void*)0x200000c0, "GPL\000", 4)); NONFAILING(*(uint32_t*)0x20000198 = 4); NONFAILING(*(uint32_t*)0x2000019c = 0x1000); NONFAILING(*(uint64_t*)0x200001a0 = 0x2062b000); NONFAILING(*(uint32_t*)0x200001a8 = 0); NONFAILING(*(uint32_t*)0x200001ac = 0); NONFAILING(*(uint8_t*)0x200001b0 = 0); NONFAILING(*(uint8_t*)0x200001b1 = 0); NONFAILING(*(uint8_t*)0x200001b2 = 0); NONFAILING(*(uint8_t*)0x200001b3 = 0); NONFAILING(*(uint8_t*)0x200001b4 = 0); NONFAILING(*(uint8_t*)0x200001b5 = 0); NONFAILING(*(uint8_t*)0x200001b6 = 0); NONFAILING(*(uint8_t*)0x200001b7 = 0); NONFAILING(*(uint8_t*)0x200001b8 = 0); NONFAILING(*(uint8_t*)0x200001b9 = 0); NONFAILING(*(uint8_t*)0x200001ba = 0); NONFAILING(*(uint8_t*)0x200001bb = 0); NONFAILING(*(uint8_t*)0x200001bc = 0); NONFAILING(*(uint8_t*)0x200001bd = 0); NONFAILING(*(uint8_t*)0x200001be = 0); NONFAILING(*(uint8_t*)0x200001bf = 0); NONFAILING(*(uint32_t*)0x200001c0 = 0); NONFAILING(*(uint32_t*)0x200001c4 = 0); NONFAILING(*(uint32_t*)0x200001c8 = -1); NONFAILING(*(uint32_t*)0x200001cc = 8); NONFAILING(*(uint64_t*)0x200001d0 = 0); NONFAILING(*(uint32_t*)0x200001d8 = 0); NONFAILING(*(uint32_t*)0x200001dc = 0x10); NONFAILING(*(uint64_t*)0x200001e0 = 0); NONFAILING(*(uint32_t*)0x200001e8 = 0); NONFAILING(*(uint32_t*)0x200001ec = 0); NONFAILING(*(uint32_t*)0x200001f0 = -1); syscall(__NR_bpf, 5ul, 0x20000180ul, 0x70ul); break; case 10: syscall(__NR_open, 0ul, 0ul, 0ul); break; case 11: syz_genetlink_get_family_id(0); break; case 12: NONFAILING(*(uint64_t*)0x20000140 = 0); NONFAILING(*(uint32_t*)0x20000148 = 0); NONFAILING(*(uint64_t*)0x20000150 = 0x20000080); NONFAILING(*(uint64_t*)0x20000080 = 0x20000640); NONFAILING(*(uint32_t*)0x20000640 = 0xa8); NONFAILING(*(uint16_t*)0x20000644 = 0x10); NONFAILING(*(uint16_t*)0x20000646 = 0x801); NONFAILING(*(uint32_t*)0x20000648 = 0); NONFAILING(*(uint32_t*)0x2000064c = 0); NONFAILING(*(uint8_t*)0x20000650 = 0); NONFAILING(*(uint8_t*)0x20000651 = 0); NONFAILING(*(uint16_t*)0x20000652 = 0); NONFAILING(*(uint32_t*)0x20000654 = 0); NONFAILING(*(uint32_t*)0x20000658 = 0); NONFAILING(*(uint32_t*)0x2000065c = 0); NONFAILING(*(uint16_t*)0x20000660 = 0x80); NONFAILING(*(uint16_t*)0x20000662 = 0x2b); NONFAILING(*(uint16_t*)0x20000664 = 0x7c); NONFAILING(*(uint16_t*)0x20000666 = 1); NONFAILING(*(uint32_t*)0x20000668 = 0xa); NONFAILING(*(uint32_t*)0x2000066c = 0); NONFAILING(*(uint64_t*)0x20000670 = 0); NONFAILING(*(uint64_t*)0x20000678 = 0); NONFAILING(*(uint32_t*)0x20000680 = 0); NONFAILING(*(uint32_t*)0x20000684 = 0); NONFAILING(*(uint64_t*)0x20000688 = 0); NONFAILING(*(uint32_t*)0x20000690 = 0); NONFAILING(*(uint32_t*)0x20000694 = 0); NONFAILING(*(uint8_t*)0x20000698 = 0); NONFAILING(*(uint8_t*)0x20000699 = 0); NONFAILING(*(uint8_t*)0x2000069a = 0); NONFAILING(*(uint8_t*)0x2000069b = 0); NONFAILING(*(uint8_t*)0x2000069c = 0); NONFAILING(*(uint8_t*)0x2000069d = 0); NONFAILING(*(uint8_t*)0x2000069e = 0); NONFAILING(*(uint8_t*)0x2000069f = 0); NONFAILING(*(uint8_t*)0x200006a0 = 0); NONFAILING(*(uint8_t*)0x200006a1 = 0); NONFAILING(*(uint8_t*)0x200006a2 = 0); NONFAILING(*(uint8_t*)0x200006a3 = 0); NONFAILING(*(uint8_t*)0x200006a4 = 0); NONFAILING(*(uint8_t*)0x200006a5 = 0); NONFAILING(*(uint8_t*)0x200006a6 = 0); NONFAILING(*(uint8_t*)0x200006a7 = 0); NONFAILING(*(uint32_t*)0x200006a8 = 0); NONFAILING(*(uint32_t*)0x200006ac = 0); NONFAILING(*(uint32_t*)0x200006b0 = -1); NONFAILING(*(uint32_t*)0x200006b4 = 8); NONFAILING(*(uint64_t*)0x200006b8 = 0); NONFAILING(*(uint32_t*)0x200006c0 = 0); NONFAILING(*(uint32_t*)0x200006c4 = 0x10); NONFAILING(*(uint64_t*)0x200006c8 = 0); NONFAILING(*(uint32_t*)0x200006d0 = 0); NONFAILING(*(uint32_t*)0x200006d4 = 0); NONFAILING(*(uint32_t*)0x200006d8 = -1); NONFAILING(*(uint16_t*)0x200006e0 = 8); NONFAILING(*(uint16_t*)0x200006e2 = 0x1b); NONFAILING(*(uint32_t*)0x200006e4 = 0); NONFAILING(*(uint64_t*)0x20000088 = 0xa8); NONFAILING(*(uint64_t*)0x20000158 = 1); NONFAILING(*(uint64_t*)0x20000160 = 0); NONFAILING(*(uint64_t*)0x20000168 = 0); NONFAILING(*(uint32_t*)0x20000170 = 0); syscall(__NR_sendmsg, r[1], 0x20000140ul, 0ul); break; case 13: NONFAILING(memcpy( (void*)0x200005c0, "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xbb\x86\xdd\x60\xd8\x65" "\x2b\x00\x14\x06\x00\xfe\x80\x00\x00\x00\x00\x00\x00\x00\x00\x0d\x00" "\x00\x00\x00\xaa\xfe\x80\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\xaa\x00\x00\x00\x00\x12\x49\xdb\x86\x92\x4f\x82\xeb\x53\xa2" "\xb7\xae\x45\x9d\x15\x37\x2e\x44\x19\x69\xfa\xad\x87\xf5\x19\x50\x14" "\x12\x61\xd1\x36\x0c\x20\x5c\x4c\x8f\x06\x14\x81\x02\x92\xbb\xb1\x05" "\xf9\xc8\x81\x2a\x99\x18\x74\x94\x2f\xaf\x1c\xef\x05\x22\x1e\x9c\xc9" "\x8b\x6f\xf5\xed\x03\x8b\x5e\x03\xe2\x25\x50\x14\xdf\x04\xb2\x76\xdc" "\x1d\x04\xc5\x21\x7b\xdd\x72\x75\x00\x00\x00\x00\x00\x00", 150)); NONFAILING(*(uint32_t*)0x20000656 = 0x41424344); NONFAILING(*(uint32_t*)0x2000065a = 0x41424344); NONFAILING(memcpy( (void*)0x2000065e, "\x50\x00\x1e\x84\xf8\x46\xaf\x96\xb1\x66\x5f\x60\xf7\x66\x40\xdd\x49" "\x9d\xbd\x0f\xa2\xfd\xe8\x49\x09\xab\x8c\xfd\x59\xbc\x14\xc0\xec\x99" "\x3b\x13\x46\xf2\x4d\x4d\xd0\x70\x7d\x4b\xd4\xe4\x69\x26\x7b\x91\x61" "\x80\x15\x8c\x2e\xe1\x3b\x47\x6a\x17\x90\xff\xd7\x29\x05\xe2\x4c\xad" "\x9b\x60\xf0\x53\x07\x04\xdd\x81\x99\x77\x1d\xdc\x09\x4e\xb2\x15\x2b" "\x3f\xc2\x9c\x48\x1b\xb1\xad\x63\x4a\xf3\x05\x5b\x95\x69\xd4\xa4\x01" "\x41\x33\xe7\xa9\x80\x2b\xdb\x46\x8f\x2a\xba\x4f\x93\x1c\x64\x01\x62" "\x9e\x19\x46\x63\xaf\x27\x5c\x54\x83\x25\x11\x09\xac\x23\xfa\x66\xc4" "\x40\x91\x21\x18\x68\x4b\x1b\xc0\xef\x36\x1e\x12\xa0\xa7\xa0\xfe\x3c" "\x56\xe6\x1d\x0c\x4b\x39\x3f\x06\xbf\x3d\x32\xd4\x8a\xb1\xec\xbf\x75" "\x20\x15\x04\x98\x38\x92\x90\xc0\x22\x36\x4c\xb8\x67\x21\xef\xa0\x50" "\x21\x72\x3c\x4b\xc0\xb7\x8e\x29\xa9\x20\x88\x0d\x61\x3f\x4f\xd5\xb0" "\x89\x58\x27\x8e\x98\x65\xbf\x2e\x78\xde\x06\x39\x67\xb2\xee\x9a\x0b" "\x0b\x29\x63\x99\x7b\x76\x94\xf9\x20\x01\x22\x9e\xcf\x00\x00\x00\x00" "\x00\x00", 240)); syz_emit_ethernet(0x6e, 0x200005c0, 0); break; } } int main(void) { syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 3ul, 0x32ul, -1, 0); install_segv_handler(); for (procid = 0; procid < 6; procid++) { if (fork() == 0) { do_sandbox_none(); } } sleep(1000000); return 0; }