// https://syzkaller.appspot.com/bug?id=cabffad18eb74197f84871802fd2c5117b61febf // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long long procid; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i; for (i = 0; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } #define MAX_FDS 30 #define USB_MAX_IFACE_NUM 4 #define USB_MAX_EP_NUM 32 #define USB_MAX_FDS 6 struct usb_endpoint_index { struct usb_endpoint_descriptor desc; int handle; }; struct usb_iface_index { struct usb_interface_descriptor* iface; uint8_t bInterfaceNumber; uint8_t bAlternateSetting; uint8_t bInterfaceClass; struct usb_endpoint_index eps[USB_MAX_EP_NUM]; int eps_num; }; struct usb_device_index { struct usb_device_descriptor* dev; struct usb_config_descriptor* config; uint8_t bDeviceClass; uint8_t bMaxPower; int config_length; struct usb_iface_index ifaces[USB_MAX_IFACE_NUM]; int ifaces_num; int iface_cur; }; struct usb_info { int fd; struct usb_device_index index; }; static struct usb_info usb_devices[USB_MAX_FDS]; static int usb_devices_num; static bool parse_usb_descriptor(const char* buffer, size_t length, struct usb_device_index* index) { if (length < sizeof(*index->dev) + sizeof(*index->config)) return false; memset(index, 0, sizeof(*index)); index->dev = (struct usb_device_descriptor*)buffer; index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev)); index->bDeviceClass = index->dev->bDeviceClass; index->bMaxPower = index->config->bMaxPower; index->config_length = length - sizeof(*index->dev); index->iface_cur = -1; size_t offset = 0; while (true) { if (offset + 1 >= length) break; uint8_t desc_length = buffer[offset]; uint8_t desc_type = buffer[offset + 1]; if (desc_length <= 2) break; if (offset + desc_length > length) break; if (desc_type == USB_DT_INTERFACE && index->ifaces_num < USB_MAX_IFACE_NUM) { struct usb_interface_descriptor* iface = (struct usb_interface_descriptor*)(buffer + offset); index->ifaces[index->ifaces_num].iface = iface; index->ifaces[index->ifaces_num].bInterfaceNumber = iface->bInterfaceNumber; index->ifaces[index->ifaces_num].bAlternateSetting = iface->bAlternateSetting; index->ifaces[index->ifaces_num].bInterfaceClass = iface->bInterfaceClass; index->ifaces_num++; } if (desc_type == USB_DT_ENDPOINT && index->ifaces_num > 0) { struct usb_iface_index* iface = &index->ifaces[index->ifaces_num - 1]; if (iface->eps_num < USB_MAX_EP_NUM) { memcpy(&iface->eps[iface->eps_num].desc, buffer + offset, sizeof(iface->eps[iface->eps_num].desc)); iface->eps_num++; } } offset += desc_length; } return true; } static struct usb_device_index* add_usb_index(int fd, const char* dev, size_t dev_len) { int i = __atomic_fetch_add(&usb_devices_num, 1, __ATOMIC_RELAXED); if (i >= USB_MAX_FDS) return NULL; int rv = 0; NONFAILING(rv = parse_usb_descriptor(dev, dev_len, &usb_devices[i].index)); if (!rv) return NULL; __atomic_store_n(&usb_devices[i].fd, fd, __ATOMIC_RELEASE); return &usb_devices[i].index; } static struct usb_device_index* lookup_usb_index(int fd) { int i; for (i = 0; i < USB_MAX_FDS; i++) { if (__atomic_load_n(&usb_devices[i].fd, __ATOMIC_ACQUIRE) == fd) { return &usb_devices[i].index; } } return NULL; } struct vusb_connect_string_descriptor { uint32_t len; char* str; } __attribute__((packed)); struct vusb_connect_descriptors { uint32_t qual_len; char* qual; uint32_t bos_len; char* bos; uint32_t strs_len; struct vusb_connect_string_descriptor strs[0]; } __attribute__((packed)); static const char default_string[] = {8, USB_DT_STRING, 's', 0, 'y', 0, 'z', 0}; static const char default_lang_id[] = {4, USB_DT_STRING, 0x09, 0x04}; static bool lookup_connect_response_in(int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, char** response_data, uint32_t* response_length) { struct usb_device_index* index = lookup_usb_index(fd); uint8_t str_idx; if (!index) return false; switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: switch (ctrl->wValue >> 8) { case USB_DT_DEVICE: *response_data = (char*)index->dev; *response_length = sizeof(*index->dev); return true; case USB_DT_CONFIG: *response_data = (char*)index->config; *response_length = index->config_length; return true; case USB_DT_STRING: str_idx = (uint8_t)ctrl->wValue; if (descs && str_idx < descs->strs_len) { *response_data = descs->strs[str_idx].str; *response_length = descs->strs[str_idx].len; return true; } if (str_idx == 0) { *response_data = (char*)&default_lang_id[0]; *response_length = default_lang_id[0]; return true; } *response_data = (char*)&default_string[0]; *response_length = default_string[0]; return true; case USB_DT_BOS: *response_data = descs->bos; *response_length = descs->bos_len; return true; case USB_DT_DEVICE_QUALIFIER: if (!descs->qual) { struct usb_qualifier_descriptor* qual = (struct usb_qualifier_descriptor*)response_data; qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; qual->bcdUSB = index->dev->bcdUSB; qual->bDeviceClass = index->dev->bDeviceClass; qual->bDeviceSubClass = index->dev->bDeviceSubClass; qual->bDeviceProtocol = index->dev->bDeviceProtocol; qual->bMaxPacketSize0 = index->dev->bMaxPacketSize0; qual->bNumConfigurations = index->dev->bNumConfigurations; qual->bRESERVED = 0; *response_length = sizeof(*qual); return true; } *response_data = descs->qual; *response_length = descs->qual_len; return true; default: break; } break; default: break; } break; default: break; } return false; } typedef bool (*lookup_connect_out_response_t)( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done); #define ATH9K_FIRMWARE_DOWNLOAD 0x30 #define ATH9K_FIRMWARE_DOWNLOAD_COMP 0x31 static bool lookup_connect_response_out_ath9k( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done) { switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_SET_CONFIGURATION: return true; default: break; } break; case USB_TYPE_VENDOR: switch (ctrl->bRequest) { case ATH9K_FIRMWARE_DOWNLOAD: return true; case ATH9K_FIRMWARE_DOWNLOAD_COMP: *done = true; return true; default: break; } break; } return false; } #define UDC_NAME_LENGTH_MAX 128 struct usb_raw_init { __u8 driver_name[UDC_NAME_LENGTH_MAX]; __u8 device_name[UDC_NAME_LENGTH_MAX]; __u8 speed; }; enum usb_raw_event_type { USB_RAW_EVENT_INVALID = 0, USB_RAW_EVENT_CONNECT = 1, USB_RAW_EVENT_CONTROL = 2, }; struct usb_raw_event { __u32 type; __u32 length; __u8 data[0]; }; struct usb_raw_ep_io { __u16 ep; __u16 flags; __u32 length; __u8 data[0]; }; #define USB_RAW_EPS_NUM_MAX 30 #define USB_RAW_EP_NAME_MAX 16 #define USB_RAW_EP_ADDR_ANY 0xff struct usb_raw_ep_caps { __u32 type_control : 1; __u32 type_iso : 1; __u32 type_bulk : 1; __u32 type_int : 1; __u32 dir_in : 1; __u32 dir_out : 1; }; struct usb_raw_ep_limits { __u16 maxpacket_limit; __u16 max_streams; __u32 reserved; }; struct usb_raw_ep_info { __u8 name[USB_RAW_EP_NAME_MAX]; __u32 addr; struct usb_raw_ep_caps caps; struct usb_raw_ep_limits limits; }; struct usb_raw_eps_info { struct usb_raw_ep_info eps[USB_RAW_EPS_NUM_MAX]; }; #define USB_RAW_IOCTL_INIT _IOW('U', 0, struct usb_raw_init) #define USB_RAW_IOCTL_RUN _IO('U', 1) #define USB_RAW_IOCTL_EVENT_FETCH _IOR('U', 2, struct usb_raw_event) #define USB_RAW_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP0_READ _IOWR('U', 4, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_ENABLE _IOW('U', 5, struct usb_endpoint_descriptor) #define USB_RAW_IOCTL_EP_DISABLE _IOW('U', 6, __u32) #define USB_RAW_IOCTL_EP_WRITE _IOW('U', 7, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_READ _IOWR('U', 8, struct usb_raw_ep_io) #define USB_RAW_IOCTL_CONFIGURE _IO('U', 9) #define USB_RAW_IOCTL_VBUS_DRAW _IOW('U', 10, __u32) #define USB_RAW_IOCTL_EPS_INFO _IOR('U', 11, struct usb_raw_eps_info) #define USB_RAW_IOCTL_EP0_STALL _IO('U', 12) #define USB_RAW_IOCTL_EP_SET_HALT _IOW('U', 13, __u32) #define USB_RAW_IOCTL_EP_CLEAR_HALT _IOW('U', 14, __u32) #define USB_RAW_IOCTL_EP_SET_WEDGE _IOW('U', 15, __u32) static int usb_raw_open() { return open("/dev/raw-gadget", O_RDWR); } static int usb_raw_init(int fd, uint32_t speed, const char* driver, const char* device) { struct usb_raw_init arg; strncpy((char*)&arg.driver_name[0], driver, sizeof(arg.driver_name)); strncpy((char*)&arg.device_name[0], device, sizeof(arg.device_name)); arg.speed = speed; return ioctl(fd, USB_RAW_IOCTL_INIT, &arg); } static int usb_raw_run(int fd) { return ioctl(fd, USB_RAW_IOCTL_RUN, 0); } static int usb_raw_event_fetch(int fd, struct usb_raw_event* event) { return ioctl(fd, USB_RAW_IOCTL_EVENT_FETCH, event); } static int usb_raw_ep0_write(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_WRITE, io); } static int usb_raw_ep0_read(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_READ, io); } static int usb_raw_ep_write(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP_WRITE, io); } static int usb_raw_ep_enable(int fd, struct usb_endpoint_descriptor* desc) { return ioctl(fd, USB_RAW_IOCTL_EP_ENABLE, desc); } static int usb_raw_ep_disable(int fd, int ep) { return ioctl(fd, USB_RAW_IOCTL_EP_DISABLE, ep); } static int usb_raw_configure(int fd) { return ioctl(fd, USB_RAW_IOCTL_CONFIGURE, 0); } static int usb_raw_vbus_draw(int fd, uint32_t power) { return ioctl(fd, USB_RAW_IOCTL_VBUS_DRAW, power); } static int usb_raw_ep0_stall(int fd) { return ioctl(fd, USB_RAW_IOCTL_EP0_STALL, 0); } static int lookup_endpoint(int fd, uint8_t bEndpointAddress) { struct usb_device_index* index = lookup_usb_index(fd); int ep; if (!index) return -1; if (index->iface_cur < 0) return -1; for (ep = 0; index->ifaces[index->iface_cur].eps_num; ep++) if (index->ifaces[index->iface_cur].eps[ep].desc.bEndpointAddress == bEndpointAddress) return index->ifaces[index->iface_cur].eps[ep].handle; return -1; } static void set_interface(int fd, int n) { struct usb_device_index* index = lookup_usb_index(fd); int ep; if (!index) return; if (index->iface_cur >= 0 && index->iface_cur < index->ifaces_num) { for (ep = 0; ep < index->ifaces[index->iface_cur].eps_num; ep++) { int rv = usb_raw_ep_disable( fd, index->ifaces[index->iface_cur].eps[ep].handle); if (rv < 0) { } else { } } } if (n >= 0 && n < index->ifaces_num) { for (ep = 0; ep < index->ifaces[n].eps_num; ep++) { int rv = usb_raw_ep_enable(fd, &index->ifaces[n].eps[ep].desc); if (rv < 0) { } else { index->ifaces[n].eps[ep].handle = rv; } } index->iface_cur = n; } } static int configure_device(int fd) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; int rv = usb_raw_vbus_draw(fd, index->bMaxPower); if (rv < 0) { return rv; } rv = usb_raw_configure(fd); if (rv < 0) { return rv; } set_interface(fd, 0); return 0; } #define USB_MAX_PACKET_SIZE 4096 struct usb_raw_control_event { struct usb_raw_event inner; struct usb_ctrlrequest ctrl; char data[USB_MAX_PACKET_SIZE]; }; struct usb_raw_ep_io_data { struct usb_raw_ep_io inner; char data[USB_MAX_PACKET_SIZE]; }; static volatile long syz_usb_connect_impl(uint64_t speed, uint64_t dev_len, const char* dev, const struct vusb_connect_descriptors* descs, lookup_connect_out_response_t lookup_connect_response_out) { if (!dev) { return -1; } int fd = usb_raw_open(); if (fd < 0) { return fd; } if (fd >= MAX_FDS) { close(fd); return -1; } struct usb_device_index* index = add_usb_index(fd, dev, dev_len); if (!index) { return -1; } char device[32]; sprintf(&device[0], "dummy_udc.%llu", procid); int rv = usb_raw_init(fd, speed, "dummy_udc", &device[0]); if (rv < 0) { return rv; } rv = usb_raw_run(fd); if (rv < 0) { return rv; } bool done = false; while (!done) { struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) continue; char* response_data = NULL; uint32_t response_length = 0; if (event.ctrl.bRequestType & USB_DIR_IN) { bool response_found = false; NONFAILING(response_found = lookup_connect_response_in( fd, descs, &event.ctrl, &response_data, &response_length)); if (!response_found) { usb_raw_ep0_stall(fd); continue; } } else { if (!lookup_connect_response_out(fd, descs, &event.ctrl, &done)) { usb_raw_ep0_stall(fd); continue; } response_data = NULL; response_length = event.ctrl.wLength; } if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD && event.ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { rv = configure_device(fd); if (rv < 0) { return rv; } } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if (event.ctrl.bRequestType & USB_DIR_IN) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } } sleep_ms(200); return fd; } static volatile long syz_usb_connect_ath9k(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { uint64_t speed = a0; uint64_t dev_len = a1; const char* dev = (const char*)a2; const struct vusb_connect_descriptors* descs = (const struct vusb_connect_descriptors*)a3; return syz_usb_connect_impl(speed, dev_len, dev, descs, &lookup_connect_response_out_ath9k); } static volatile long syz_usb_ep_write(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { int fd = a0; uint8_t ep = a1; uint32_t len = a2; char* data = (char*)a3; int ep_handle = lookup_endpoint(fd, ep); if (ep_handle < 0) { return -1; } struct usb_raw_ep_io_data io_data; io_data.inner.ep = ep_handle; io_data.inner.flags = 0; if (len > sizeof(io_data.data)) len = sizeof(io_data.data); io_data.inner.length = len; NONFAILING(memcpy(&io_data.data[0], data, len)); int rv = usb_raw_ep_write(fd, (struct usb_raw_ep_io*)&io_data); if (rv < 0) { return rv; } sleep_ms(200); return 0; } static long syz_open_dev(volatile long a0, volatile long a1, volatile long a2) { if (a0 == 0xc || a0 == 0xb) { char buf[128]; sprintf(buf, "/dev/%s/%d:%d", a0 == 0xc ? "char" : "block", (uint8_t)a1, (uint8_t)a2); return open(buf, O_RDWR, 0); } else { char buf[1024]; char* hash; NONFAILING(strncpy(buf, (char*)a0, sizeof(buf) - 1)); buf[sizeof(buf) - 1] = 0; while ((hash = strchr(buf, '#'))) { *hash = '0' + (char)(a1 % 10); a1 /= 10; } return open(buf, a2, 0); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; int collide = 0; again: for (call = 0; call < 9; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); if (collide && (call % 2) == 0) break; event_timedwait(&th->done, 45 + (call == 0 ? 3000 : 0) + (call == 3 ? 300 : 0) + (call == 4 ? 300 : 0) + (call == 5 ? 50 : 0) + (call == 8 ? 300 : 0)); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); if (!collide) { collide = 1; goto again; } } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter; for (iter = 0;; iter++) { int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5 * 1000) continue; kill_and_wait(pid, &status); break; } } } uint64_t r[2] = {0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: NONFAILING(*(uint8_t*)0x20000240 = 0x12); NONFAILING(*(uint8_t*)0x20000241 = 1); NONFAILING(*(uint16_t*)0x20000242 = 0x200); NONFAILING(*(uint8_t*)0x20000244 = -1); NONFAILING(*(uint8_t*)0x20000245 = -1); NONFAILING(*(uint8_t*)0x20000246 = -1); NONFAILING(*(uint8_t*)0x20000247 = 0x40); NONFAILING(*(uint16_t*)0x20000248 = 0xcf3); NONFAILING(*(uint16_t*)0x2000024a = 0x9271); NONFAILING(*(uint16_t*)0x2000024c = 0x108); NONFAILING(*(uint8_t*)0x2000024e = 1); NONFAILING(*(uint8_t*)0x2000024f = 2); NONFAILING(*(uint8_t*)0x20000250 = 3); NONFAILING(*(uint8_t*)0x20000251 = 1); NONFAILING(*(uint8_t*)0x20000252 = 9); NONFAILING(*(uint8_t*)0x20000253 = 2); NONFAILING(*(uint16_t*)0x20000254 = 0x48); NONFAILING(*(uint8_t*)0x20000256 = 1); NONFAILING(*(uint8_t*)0x20000257 = 1); NONFAILING(*(uint8_t*)0x20000258 = 0); NONFAILING(*(uint8_t*)0x20000259 = 0x80); NONFAILING(*(uint8_t*)0x2000025a = 0xfa); NONFAILING(*(uint8_t*)0x2000025b = 9); NONFAILING(*(uint8_t*)0x2000025c = 4); NONFAILING(*(uint8_t*)0x2000025d = 0); NONFAILING(*(uint8_t*)0x2000025e = 0); NONFAILING(*(uint8_t*)0x2000025f = 6); NONFAILING(*(uint8_t*)0x20000260 = -1); NONFAILING(*(uint8_t*)0x20000261 = 0); NONFAILING(*(uint8_t*)0x20000262 = 0); NONFAILING(*(uint8_t*)0x20000263 = 0); NONFAILING(*(uint8_t*)0x20000264 = 9); NONFAILING(*(uint8_t*)0x20000265 = 5); NONFAILING(*(uint8_t*)0x20000266 = 1); NONFAILING(*(uint8_t*)0x20000267 = 2); NONFAILING(*(uint16_t*)0x20000268 = 0x200); NONFAILING(*(uint8_t*)0x2000026a = 0); NONFAILING(*(uint8_t*)0x2000026b = 0); NONFAILING(*(uint8_t*)0x2000026c = 0); NONFAILING(*(uint8_t*)0x2000026d = 9); NONFAILING(*(uint8_t*)0x2000026e = 5); NONFAILING(*(uint8_t*)0x2000026f = 0x82); NONFAILING(*(uint8_t*)0x20000270 = 2); NONFAILING(*(uint16_t*)0x20000271 = 0x200); NONFAILING(*(uint8_t*)0x20000273 = 0); NONFAILING(*(uint8_t*)0x20000274 = 0); NONFAILING(*(uint8_t*)0x20000275 = 0); NONFAILING(*(uint8_t*)0x20000276 = 9); NONFAILING(*(uint8_t*)0x20000277 = 5); NONFAILING(*(uint8_t*)0x20000278 = 0x83); NONFAILING(*(uint8_t*)0x20000279 = 3); NONFAILING(*(uint16_t*)0x2000027a = 0x40); NONFAILING(*(uint8_t*)0x2000027c = 1); NONFAILING(*(uint8_t*)0x2000027d = 0); NONFAILING(*(uint8_t*)0x2000027e = 0); NONFAILING(*(uint8_t*)0x2000027f = 9); NONFAILING(*(uint8_t*)0x20000280 = 5); NONFAILING(*(uint8_t*)0x20000281 = 4); NONFAILING(*(uint8_t*)0x20000282 = 3); NONFAILING(*(uint16_t*)0x20000283 = 0x40); NONFAILING(*(uint8_t*)0x20000285 = 1); NONFAILING(*(uint8_t*)0x20000286 = 0); NONFAILING(*(uint8_t*)0x20000287 = 0); NONFAILING(*(uint8_t*)0x20000288 = 9); NONFAILING(*(uint8_t*)0x20000289 = 5); NONFAILING(*(uint8_t*)0x2000028a = 5); NONFAILING(*(uint8_t*)0x2000028b = 2); NONFAILING(*(uint16_t*)0x2000028c = 0x200); NONFAILING(*(uint8_t*)0x2000028e = 0); NONFAILING(*(uint8_t*)0x2000028f = 0); NONFAILING(*(uint8_t*)0x20000290 = 0); NONFAILING(*(uint8_t*)0x20000291 = 9); NONFAILING(*(uint8_t*)0x20000292 = 5); NONFAILING(*(uint8_t*)0x20000293 = 6); NONFAILING(*(uint8_t*)0x20000294 = 2); NONFAILING(*(uint16_t*)0x20000295 = 0x200); NONFAILING(*(uint8_t*)0x20000297 = 0); NONFAILING(*(uint8_t*)0x20000298 = 0); NONFAILING(*(uint8_t*)0x20000299 = 0); res = syz_usb_connect_ath9k(3, 0x92, 0x20000240, 0); if (res != -1) r[0] = res; break; case 1: res = syz_open_dev(0, 0, 0x180041); if (res != -1) r[1] = res; break; case 2: syz_open_dev(0, 0, 2); break; case 3: syz_usb_ep_write(r[0], 0x82, 0, 0); break; case 4: NONFAILING(*(uint16_t*)0x20000480 = 0xb3); NONFAILING(*(uint16_t*)0x20000482 = 0x4e00); NONFAILING(memcpy( (void*)0x20000484, "\x4b\x10\xb6\x47\x63\x9b\x87\x51\x35\x38\x59\x2f\xe4\xa1\xb7\xe5\x20" "\x88\x4b\x0d\x45\x64\xab\xa3\x93\xa0\xb8\xec\x33\x8e\xe8\x06\xbd\x29" "\x37\xa6\xeb\x76\x57\x0f\x79\x37\xdf\x79\xab\x50\x79\xd8\x3c\xab\xb9" "\x9e\x7a\xc4\x19\x2d\x1d\xf2\x76\x7e\x41\x6d\x16\x8a\x1d\xfa\x19\x8f" "\x40\xfa\x32\x4d\x7f\x64\xae\xb1\x6e\x80\x7d\xec\x54\x7e\x83\xa3\xad" "\x59\x06\xd0\xfc\x55\x0c\x9b\x04\x49\x76\x53\x44\x84\xbd\x04\x3c\xe8" "\xb3\x31\xbf\x58\xd7\x08\x5c\x7e\x2b\x59\xf6\x19\x4f\x67\x32\x47\xca" "\x0d\x76\x46\x58\x4f\xea\x03\x5c\x29\x79\x93\x24\x63\xf2\x23\x0d\xb1" "\xfd\x73\x85\x32\xaa\x5d\x6e\xe3\xc8\x06\x66\x44\xbe\x92\x5c\xdb\x10" "\xa8\x3c\xf8\x2a\xe2\x72\xed\x12\x04\xf3\xb9\xd5\x10\x05\x02\xcb\xfd" "\x54\x50\x4a\x48\x0f\xc5\x3c\x08\x22", 179)); NONFAILING(*(uint16_t*)0x20000538 = 0xb8); NONFAILING(*(uint16_t*)0x2000053a = 0x4e00); NONFAILING(memcpy( (void*)0x2000053c, "\x42\xac\xbc\x42\x37\x05\x80\xfc\x4c\x15\x14\xe5\xcd\xc8\x0f\x21\x12" "\xf8\x59\xdf\x74\x35\x12\xb3\xfd\xba\xa8\x93\xe3\xed\xe9\x35\x4f\x0a" "\x71\x92\x1a\x4c\x03\xf9\x7e\x4d\x9a\x0d\x4f\xbc\x93\xc9\xe0\x2d\xa7" "\x83\x01\x37\xa6\xca\x08\x17\x64\x28\x3e\x49\x5e\x8a\x3b\xa7\x7e\xec" "\x06\xcf\x56\xf6\x46\x70\xeb\xbb\x42\x16\x70\x48\x59\xdb\x67\x86\xd4" "\x42\x66\x8b\x89\xab\xd1\xd3\x87\xf8\xb2\x03\xaf\x09\xec\x88\xf7\xd7" "\x4f\xfa\xf3\x0f\xc2\xae\xfc\x6b\xe8\xeb\x9b\x41\xf6\x89\x37\xad\x3b" "\x19\x41\x35\x6c\xda\x17\x65\xf2\xd3\xb5\x7a\xa3\x36\x5a\x82\xf2\x92" "\xac\x43\xa0\xba\x0a\x5f\x86\x53\x7e\x54\x14\xe8\x0e\xbd\x72\xf6\xb8" "\x53\x48\x47\xcc\x3a\xd9\x09\x47\x17\xe8\xce\xce\x6b\xd9\xe2\x4a\xb7" "\x9d\x29\x5c\xb1\xac\xf5\x33\x78\xb7\x7c\x07\x34\x8d\xec", 184)); NONFAILING(*(uint16_t*)0x200005f4 = 0); NONFAILING(*(uint16_t*)0x200005f6 = 0x4e00); NONFAILING(*(uint16_t*)0x200005f8 = 0x3b); NONFAILING(*(uint16_t*)0x200005fa = 0x4e00); NONFAILING(memcpy((void*)0x200005fc, "\x01\x90\x77\x4b\xee\xcd\xfa\x6f\xb2\x9d\xe9\xb0\x37\x72" "\x9c\xd4\x66\x67\x6b\x76\x47\x8b\x7b\x38\x2b\xe1\xc7\x68" "\xb8\x29\x57\x7f\x2d\x6c\xfc\x34\x5f\xa3\xba\xc6\x65\xdf" "\x32\x1c\x15\x14\xca\x85\x0b\x94\x9c\xb2\x0e\x58\x8c\x30" "\x76\x76\x26", 59)); NONFAILING(*(uint16_t*)0x20000638 = 0x15); NONFAILING(*(uint16_t*)0x2000063a = 0x4e00); NONFAILING(memcpy((void*)0x2000063c, "\x18\x21\x63\xbe\xbb\x85\xb2\xa8\x92" "\xbe\x40\x7e\xf7\x9b\x4c\xc9\x7a\x0d" "\x79\x3d\x99", 21)); NONFAILING(*(uint16_t*)0x20000654 = 0); NONFAILING(*(uint16_t*)0x20000656 = 0x4e00); NONFAILING(*(uint16_t*)0x20000658 = 0x62); NONFAILING(*(uint16_t*)0x2000065a = 0x4e00); NONFAILING(memcpy( (void*)0x2000065c, "\x52\x2d\x36\x20\xb2\x17\xf6\xdf\x94\x7d\xf8\xda\x94\x4a\x32\xa6\xac" "\xbe\x59\xa7\x01\xdc\xd1\x88\x0e\xf3\x5b\x14\xe4\x06\x85\x6c\x9f\x58" "\xfe\x13\x9d\x75\x91\x98\x4d\x21\x27\xfd\x4f\x7b\x9a\x2f\xd8\x25\x74" "\x6a\xf6\x11\xa1\xd6\x0b\x58\x35\xf4\x67\x1b\xd5\x43\xc7\x93\x72\xa7" "\x7c\xed\xa3\xfe\x46\x32\x4f\x2b\x48\x39\x29\x0f\xaf\x48\x8e\x05\xe1" "\x2f\x90\x75\xa9\x6e\xae\xa9\x22\x35\x7e\x43\x47\x51", 98)); NONFAILING(*(uint16_t*)0x200006c0 = 0); NONFAILING(*(uint16_t*)0x200006c2 = 0x4e00); NONFAILING(*(uint16_t*)0x200006c4 = 0xef); NONFAILING(*(uint16_t*)0x200006c6 = 0x4e00); NONFAILING(memcpy( (void*)0x200006c8, "\xd4\xca\xef\x5a\xb8\x39\x0f\xe3\x36\xc1\x9f\x6d\xb2\x57\x40\x26\x51" "\xb1\x17\x4d\x7e\x7d\x21\x44\xf9\x77\xf8\x42\x8a\x5c\xdd\xd5\x91\x5c" "\x55\x92\x52\x97\x5f\x43\x05\x71\x0e\xa9\x51\x42\x1d\xde\xf8\x65\x7b" "\x31\x68\x46\x35\xa1\xb5\x42\xbe\xf5\x7d\xca\xc9\xb9\xa7\x14\x58\x60" "\x84\xa4\x5e\xb7\x2c\x20\xa0\xdb\x89\xc6\x8a\x13\x8b\x72\xc6\xf4\x0d" "\x50\x7b\xf1\x8a\x4f\xf9\x98\x6b\x37\x2a\xc5\xfb\xb4\xa3\x75\x6e\x71" "\x5b\x5d\x16\xca\xfe\xb7\x79\x0e\xa4\x5e\x36\x98\x0e\xe7\x3b\x60\x4a" "\x04\xb4\x02\x37\x8c\x8d\x14\xf8\xd7\x8e\x35\x1c\x14\x89\xbe\xa1\xef" "\xae\x03\xeb\xf7\x3b\x9d\x50\xd4\x3e\x62\x7d\x9c\x66\x93\xcf\x49\x3a" "\xfc\x1e\xc7\xb3\x9c\x48\xc1\xff\x73\xce\x1f\xf5\xb4\xf5\x9d\x5d\xeb" "\x01\xec\x18\xba\x07\xff\xc8\x23\xea\xab\x2c\xa1\x11\xcb\xf5\xe4\x92" "\x66\xbd\xa1\x73\xee\xaf\x7d\xf8\xdb\x58\x4c\x5f\x8b\x14\xa0\x8c\x52" "\x81\x5d\xfe\xe7\x9a\xd8\x96\xa4\xd6\xbb\x19\xe2\x43\x31\xaf\x74\x2b" "\x88\x58\x41\x80\x94\x24\x69\x86\xea\x54\xdb\x6b\x17\x49\x35\xb7\x71" "\xcf", 239)); NONFAILING(*(uint16_t*)0x200007b8 = 0xcd); NONFAILING(*(uint16_t*)0x200007ba = 0x4e00); NONFAILING(memcpy( (void*)0x200007bc, "\x23\x6d\x52\x51\x05\xa4\xff\xe1\xf9\x2e\x29\x7e\xc9\x22\x69\x58\x3f" "\xae\x6b\x03\x48\x02\xed\x48\x54\x57\x7a\xf7\x3c\x8e\x1e\x1b\xb2\xa6" "\x6a\x8e\x7f\xf4\x49\xc4\x75\x29\xdf\x44\xfc\xf4\xae\x6f\x71\x53\x71" "\xbc\x24\x2b\x40\xcb\x05\x93\x84\xa4\xda\x3b\xda\x8f\x81\x34\x5e\x18" "\xe0\x5e\x62\x6e\x05\x17\x27\x0c\xa3\x6f\x54\xff\xab\x7c\x71\x11\xfd" "\xc3\x2d\x7b\x4a\x8d\xf0\x9c\x29\x88\x23\x61\xa8\xf1\x2a\xe8\x92\x98" "\xb9\xcc\x10\x27\x25\x48\x28\x1e\x89\x27\x29\xe7\x57\x8d\x5b\x72\xa2" "\xef\xd9\xca\x93\xc7\x43\x5c\x9e\x30\xf2\xc5\x45\x4b\x7a\xc9\x91\x51" "\x7d\xe5\xd4\xfb\x40\xa1\x17\x05\xb2\x86\xb2\xe6\x82\x93\x99\x2f\xfd" "\x3b\x60\x9b\x3c\x5c\x86\xdc\x6f\x64\xac\x89\x33\x2d\x4f\x99\xd1\x38" "\x69\x3a\x82\xef\xe9\x91\xeb\x59\xe5\x49\x8a\xb2\x45\x60\x88\xaf\xb8" "\xc9\x1c\xe5\x51\x70\x41\x69\x87\xfe\x4a\x96\x31\xae\xd8\x5b\xa6\x55" "\x75", 205)); syz_usb_ep_write(r[0], 0x82, 0x40c, 0x20000480); break; case 5: syz_open_dev(0, 8, 0); break; case 6: syz_open_dev(0, 0, 0); break; case 7: syscall(__NR_write, r[1], 0ul, 0ul); break; case 8: syz_usb_ep_write(r[0], 0x82, 0x170, 0); break; } } int main(void) { syscall(__NR_mmap, 0x1ffff000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x20000000ul, 0x1000000ul, 7ul, 0x32ul, -1, 0ul); syscall(__NR_mmap, 0x21000000ul, 0x1000ul, 0ul, 0x32ul, -1, 0ul); install_segv_handler(); for (procid = 0; procid < 6; procid++) { if (fork() == 0) { loop(); } } sleep(1000000); return 0; }