// https://syzkaller.appspot.com/bug?id=de6519e18a472f06a6b530c84c3be8a29c554900 // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } #include #include #include #include #include #include #include const int kFailStatus = 67; const int kRetryStatus = 69; static void fail(const char* msg, ...) { int e = errno; va_list args; va_start(args, msg); vfprintf(stderr, msg, args); va_end(args); fprintf(stderr, " (errno %d)\n", e); doexit((e == ENOMEM || e == EAGAIN) ? kRetryStatus : kFailStatus); } static void use_temporary_dir() { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) fail("failed to mkdtemp"); if (chmod(tmpdir, 0777)) fail("failed to chmod"); if (chdir(tmpdir)) fail("failed to chdir"); } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 8 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); #define CLONE_NEWCGROUP 0x02000000 unshare(CLONE_NEWNS); unshare(CLONE_NEWIPC); unshare(CLONE_NEWCGROUP); unshare(CLONE_NEWNET); unshare(CLONE_NEWUTS); unshare(CLONE_SYSVSEM); } static int do_sandbox_none(int executor_pid, bool enable_tun) { unshare(CLONE_NEWPID); int pid = fork(); if (pid < 0) fail("sandbox fork failed"); if (pid) return pid; sandbox_common(); loop(); doexit(1); } static void test(); void loop() { while (1) { test(); } } struct thread_t { int created, running, call; pthread_t th; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static int collide; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); } return 0; } static void execute(int num_calls) { int call, thread; running = 0; for (call = 0; call < num_calls; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); pthread_create(&th->th, &attr, thr, th); } if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) { th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); if (collide && call % 2) break; struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 20 * 1000 * 1000; syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts); if (running) usleep((call == num_calls - 1) ? 10000 : 1000); break; } } } } #ifndef __NR_bpf #define __NR_bpf 321 #endif long r[4]; uint64_t procid; void execute_call(int call) { switch (call) { case 0: syscall(__NR_mmap, 0x20000000, 0xfff000, 0x3, 0x32, 0xffffffff, 0x0); break; case 1: if (syscall(__NR_socketpair, 0x1, 0x2, 0x0, 0x20800ff8) != -1) { r[0] = *(uint32_t*)0x20800ff8; r[1] = *(uint32_t*)0x20800ffc; } break; case 2: *(uint32_t*)0x20b4cfd0 = 0x1; *(uint32_t*)0x20b4cfd4 = 0x2; *(uint64_t*)0x20b4cfd8 = 0x20ef3000; *(uint64_t*)0x20b4cfe0 = 0x20b4d000; *(uint32_t*)0x20b4cfe8 = 0x1; *(uint32_t*)0x20b4cfec = 0x80; *(uint64_t*)0x20b4cff0 = 0x2000a000; *(uint32_t*)0x20b4cff8 = 0x0; *(uint32_t*)0x20b4cffc = 0x0; *(uint8_t*)0x20ef3000 = 0xb7; *(uint8_t*)0x20ef3001 = 0x0; *(uint16_t*)0x20ef3002 = 0x0; *(uint32_t*)0x20ef3004 = 0x0; *(uint8_t*)0x20ef3008 = 0x95; *(uint8_t*)0x20ef3009 = 0x0; *(uint16_t*)0x20ef300a = 0x0; *(uint32_t*)0x20ef300c = 0x0; memcpy((void*)0x20b4d000, "syseO", 6); r[2] = syscall(__NR_bpf, 0x5, 0x20b4cfd0, 0x30); break; case 3: r[3] = syscall(__NR_socket, 0x29, 0x5, 0x0); break; case 4: *(uint64_t*)0x20d33000 = 0x209e7000; *(uint64_t*)0x20d33008 = 0x1; memcpy((void*)0x209e7000, "\xfd", 1); syscall(__NR_writev, r[1], 0x20d33000, 0x1); break; case 5: *(uint32_t*)0x20ff9ff8 = r[0]; *(uint32_t*)0x20ff9ffc = r[2]; syscall(__NR_ioctl, r[3], 0x89e0, 0x20ff9ff8); break; } } void test() { memset(r, -1, sizeof(r)); execute(6); collide = 1; execute(6); } int main() { int i; for (i = 0; i < 8; i++) { if (fork() == 0) { procid = i; use_temporary_dir(); int pid = do_sandbox_none(i, false); int status = 0; while (waitpid(pid, &status, __WALL) != pid) { } return 0; } } sleep(1000000); return 0; }