// https://syzkaller.appspot.com/bug?id=4b05f02ad565236761ea12a903bec2bb423984e3 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __NR_bpf #define __NR_bpf 321 #endif static unsigned long long procid; static __thread int clone_ongoing; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { if (__atomic_load_n(&clone_ongoing, __ATOMIC_RELAXED) != 0) { exit(sig); } uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0; int valid = addr < prog_start || addr > prog_end; if (skip && valid) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ ({ \ int ok = 1; \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } else \ ok = 0; \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ ok; \ }) static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[4096]; }; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; if (size > 0) memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len, bool dofail) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != (ssize_t)hdr->nlmsg_len) { if (dofail) exit(1); return -1; } n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (reply_len) *reply_len = 0; if (n < 0) { if (dofail) exit(1); return -1; } if (n < (ssize_t)sizeof(struct nlmsghdr)) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type == NLMSG_DONE) return 0; if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type != NLMSG_ERROR) { errno = EINVAL; if (dofail) exit(1); return -1; } errno = -((struct nlmsgerr*)(hdr + 1))->error; return -errno; } static int netlink_send(struct nlmsg* nlmsg, int sock) { return netlink_send_ext(nlmsg, sock, 0, NULL, true); } static int netlink_query_family_id(struct nlmsg* nlmsg, int sock, const char* family_name, bool dofail) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = CTRL_CMD_GETFAMILY; netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name, strnlen(family_name, GENL_NAMSIZ - 1) + 1); int n = 0; int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail); if (err < 0) { return -1; } uint16_t id = 0; struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) { id = *(uint16_t*)(attr + 1); break; } } if (!id) { errno = EINVAL; return -1; } recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); return id; } static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up, const char* master, const void* mac, int macsize, const char* new_name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; hdr.ifi_index = if_nametoindex(name); netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr)); if (new_name) netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize); netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize); return netlink_send(nlmsg, sock); } static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr)); if (err < 0) { } } static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr)); if (err < 0) { } } static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, NDA_DST, addr, addrsize); netlink_attr(nlmsg, NDA_LLADDR, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static struct nlmsg nlmsg; static int tunfd = -1; #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 200; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { exit(1); } char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL); close(sock); } #define WIFI_INITIAL_DEVICE_COUNT 2 #define WIFI_MAC_BASE \ { \ 0x08, 0x02, 0x11, 0x00, 0x00, 0x00 \ } #define WIFI_IBSS_BSSID \ { \ 0x50, 0x50, 0x50, 0x50, 0x50, 0x50 \ } #define WIFI_IBSS_SSID \ { \ 0x10, 0x10, 0x10, 0x10, 0x10, 0x10 \ } #define WIFI_DEFAULT_FREQUENCY 2412 #define WIFI_DEFAULT_SIGNAL 0 #define WIFI_DEFAULT_RX_RATE 1 #define HWSIM_CMD_REGISTER 1 #define HWSIM_CMD_FRAME 2 #define HWSIM_CMD_NEW_RADIO 4 #define HWSIM_ATTR_SUPPORT_P2P_DEVICE 14 #define HWSIM_ATTR_PERM_ADDR 22 #define IF_OPER_UP 6 struct join_ibss_props { int wiphy_freq; bool wiphy_freq_fixed; uint8_t* mac; uint8_t* ssid; int ssid_len; }; static int set_interface_state(const char* interface_name, int on) { struct ifreq ifr; int sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock < 0) { return -1; } memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, interface_name); int ret = ioctl(sock, SIOCGIFFLAGS, &ifr); if (ret < 0) { close(sock); return -1; } if (on) ifr.ifr_flags |= IFF_UP; else ifr.ifr_flags &= ~IFF_UP; ret = ioctl(sock, SIOCSIFFLAGS, &ifr); close(sock); if (ret < 0) { return -1; } return 0; } static int nl80211_set_interface(struct nlmsg* nlmsg, int sock, int nl80211_family, uint32_t ifindex, uint32_t iftype) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = NL80211_CMD_SET_INTERFACE; netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex)); netlink_attr(nlmsg, NL80211_ATTR_IFTYPE, &iftype, sizeof(iftype)); int err = netlink_send(nlmsg, sock); if (err < 0) { } return err; } static int nl80211_join_ibss(struct nlmsg* nlmsg, int sock, int nl80211_family, uint32_t ifindex, struct join_ibss_props* props) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = NL80211_CMD_JOIN_IBSS; netlink_init(nlmsg, nl80211_family, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, NL80211_ATTR_IFINDEX, &ifindex, sizeof(ifindex)); netlink_attr(nlmsg, NL80211_ATTR_SSID, props->ssid, props->ssid_len); netlink_attr(nlmsg, NL80211_ATTR_WIPHY_FREQ, &(props->wiphy_freq), sizeof(props->wiphy_freq)); if (props->mac) netlink_attr(nlmsg, NL80211_ATTR_MAC, props->mac, ETH_ALEN); if (props->wiphy_freq_fixed) netlink_attr(nlmsg, NL80211_ATTR_FREQ_FIXED, NULL, 0); int err = netlink_send(nlmsg, sock); if (err < 0) { } return err; } static int get_ifla_operstate(struct nlmsg* nlmsg, int ifindex) { struct ifinfomsg info; memset(&info, 0, sizeof(info)); info.ifi_family = AF_UNSPEC; info.ifi_index = ifindex; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) { return -1; } netlink_init(nlmsg, RTM_GETLINK, 0, &info, sizeof(info)); int n; int err = netlink_send_ext(nlmsg, sock, RTM_NEWLINK, &n, true); close(sock); if (err) { return -1; } struct rtattr* attr = IFLA_RTA(NLMSG_DATA(nlmsg->buf)); for (; RTA_OK(attr, n); attr = RTA_NEXT(attr, n)) { if (attr->rta_type == IFLA_OPERSTATE) return *((int32_t*)RTA_DATA(attr)); } return -1; } static int await_ifla_operstate(struct nlmsg* nlmsg, char* interface, int operstate) { int ifindex = if_nametoindex(interface); while (true) { usleep(1000); int ret = get_ifla_operstate(nlmsg, ifindex); if (ret < 0) return ret; if (ret == operstate) return 0; } return 0; } static int nl80211_setup_ibss_interface(struct nlmsg* nlmsg, int sock, int nl80211_family_id, char* interface, struct join_ibss_props* ibss_props) { int ifindex = if_nametoindex(interface); if (ifindex == 0) { return -1; } int ret = nl80211_set_interface(nlmsg, sock, nl80211_family_id, ifindex, NL80211_IFTYPE_ADHOC); if (ret < 0) { return -1; } ret = set_interface_state(interface, 1); if (ret < 0) { return -1; } ret = nl80211_join_ibss(nlmsg, sock, nl80211_family_id, ifindex, ibss_props); if (ret < 0) { return -1; } return 0; } static int hwsim80211_create_device(struct nlmsg* nlmsg, int sock, int hwsim_family, uint8_t mac_addr[ETH_ALEN]) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = HWSIM_CMD_NEW_RADIO; netlink_init(nlmsg, hwsim_family, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, HWSIM_ATTR_SUPPORT_P2P_DEVICE, NULL, 0); netlink_attr(nlmsg, HWSIM_ATTR_PERM_ADDR, mac_addr, ETH_ALEN); int err = netlink_send(nlmsg, sock); if (err < 0) { } return err; } static void initialize_wifi_devices(void) { int rfkill = open("/dev/rfkill", O_RDWR); if (rfkill == -1) { if (errno != ENOENT && errno != EACCES) exit(1); } else { struct rfkill_event event = {0}; event.type = RFKILL_TYPE_ALL; event.op = RFKILL_OP_CHANGE_ALL; if (write(rfkill, &event, sizeof(event)) != (ssize_t)(sizeof(event))) exit(1); close(rfkill); } uint8_t mac_addr[6] = WIFI_MAC_BASE; int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (sock < 0) { return; } int hwsim_family_id = netlink_query_family_id(&nlmsg, sock, "MAC80211_HWSIM", true); int nl80211_family_id = netlink_query_family_id(&nlmsg, sock, "nl80211", true); uint8_t ssid[] = WIFI_IBSS_SSID; uint8_t bssid[] = WIFI_IBSS_BSSID; struct join_ibss_props ibss_props = {.wiphy_freq = WIFI_DEFAULT_FREQUENCY, .wiphy_freq_fixed = true, .mac = bssid, .ssid = ssid, .ssid_len = sizeof(ssid)}; for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) { mac_addr[5] = device_id; int ret = hwsim80211_create_device(&nlmsg, sock, hwsim_family_id, mac_addr); if (ret < 0) exit(1); char interface[6] = "wlan0"; interface[4] += device_id; if (nl80211_setup_ibss_interface(&nlmsg, sock, nl80211_family_id, interface, &ibss_props) < 0) exit(1); } for (int device_id = 0; device_id < WIFI_INITIAL_DEVICE_COUNT; device_id++) { char interface[6] = "wlan0"; interface[4] += device_id; int ret = await_ifla_operstate(&nlmsg, interface, IF_OPER_UP); if (ret < 0) exit(1); } close(sock); } static int runcmdline(char* cmdline) { int ret = system(cmdline); if (ret) { } return ret; } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN || errno == EBADFD) return -1; exit(1); } return rv; } static void flush_tun() { char data[1000]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #define MAX_FDS 30 static void mount_cgroups(const char* dir, const char** controllers, int count) { if (mkdir(dir, 0777)) { return; } char enabled[128] = {0}; int i = 0; for (; i < count; i++) { if (mount("none", dir, "cgroup", 0, controllers[i])) { continue; } umount(dir); strcat(enabled, ","); strcat(enabled, controllers[i]); } if (enabled[0] == 0) { if (rmdir(dir) && errno != EBUSY) exit(1); return; } if (mount("none", dir, "cgroup", 0, enabled + 1)) { if (rmdir(dir) && errno != EBUSY) exit(1); } if (chmod(dir, 0777)) { } } static void mount_cgroups2(const char** controllers, int count) { if (mkdir("/syzcgroup/unified", 0777)) { return; } if (mount("none", "/syzcgroup/unified", "cgroup2", 0, NULL)) { if (rmdir("/syzcgroup/unified") && errno != EBUSY) exit(1); return; } if (chmod("/syzcgroup/unified", 0777)) { } int control = open("/syzcgroup/unified/cgroup.subtree_control", O_WRONLY); if (control == -1) return; int i; for (i = 0; i < count; i++) if (write(control, controllers[i], strlen(controllers[i])) < 0) { } close(control); } static void setup_cgroups() { const char* unified_controllers[] = {"+cpu", "+io", "+pids"}; const char* net_controllers[] = {"net", "net_prio", "devices", "blkio", "freezer"}; const char* cpu_controllers[] = {"cpuset", "cpuacct", "hugetlb", "rlimit", "memory"}; if (mkdir("/syzcgroup", 0777)) { return; } mount_cgroups2(unified_controllers, sizeof(unified_controllers) / sizeof(unified_controllers[0])); mount_cgroups("/syzcgroup/net", net_controllers, sizeof(net_controllers) / sizeof(net_controllers[0])); mount_cgroups("/syzcgroup/cpu", cpu_controllers, sizeof(cpu_controllers) / sizeof(cpu_controllers[0])); write_file("/syzcgroup/cpu/cgroup.clone_children", "1"); write_file("/syzcgroup/cpu/cpuset.memory_pressure_enabled", "1"); } static void setup_cgroups_loop() { int pid = getpid(); char file[128]; char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/pids.max", cgroupdir); write_file(file, "32"); snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); snprintf(file, sizeof(file), "%s/memory.soft_limit_in_bytes", cgroupdir); write_file(file, "%d", 299 << 20); snprintf(file, sizeof(file), "%s/memory.limit_in_bytes", cgroupdir); write_file(file, "%d", 300 << 20); snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (mkdir(cgroupdir, 0777)) { } snprintf(file, sizeof(file), "%s/cgroup.procs", cgroupdir); write_file(file, "%d", pid); } static void setup_cgroups_test() { char cgroupdir[64]; snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/unified/syz%llu", procid); if (symlink(cgroupdir, "./cgroup")) { } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/cpu/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.cpu")) { } snprintf(cgroupdir, sizeof(cgroupdir), "/syzcgroup/net/syz%llu", procid); if (symlink(cgroupdir, "./cgroup.net")) { } } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void setup_binderfs() { if (mkdir("/dev/binderfs", 0777)) { } if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } static int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535"); initialize_tun(); initialize_wifi_devices(); setup_binderfs(); loop(); exit(1); } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { int iter = 0; DIR* dp = 0; retry: while (umount2(dir, MNT_DETACH | UMOUNT_NOFOLLOW) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } struct dirent* ep = 0; while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, MNT_DETACH | UMOUNT_NOFOLLOW) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, MNT_DETACH | UMOUNT_NOFOLLOW)) exit(1); } } closedir(dp); for (int i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, MNT_DETACH | UMOUNT_NOFOLLOW)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_loop() { setup_cgroups_loop(); } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setup_cgroups_test(); write_file("/proc/self/oom_score_adj", "1000"); flush_tun(); if (symlink("/dev/binderfs", "./binderfs")) { } } static void close_fds() { for (int fd = 3; fd < MAX_FDS; fd++) close(fd); } static void setup_usb() { if (chmod("/dev/raw-gadget", 0666)) exit(1); } static void setup_sysctl() { char mypid[32]; snprintf(mypid, sizeof(mypid), "%d", getpid()); struct { const char* name; const char* data; } files[] = { {"/sys/kernel/debug/x86/nmi_longest_ns", "10000000000"}, {"/proc/sys/kernel/hung_task_check_interval_secs", "20"}, {"/proc/sys/net/core/bpf_jit_kallsyms", "1"}, {"/proc/sys/net/core/bpf_jit_harden", "0"}, {"/proc/sys/kernel/kptr_restrict", "0"}, {"/proc/sys/kernel/softlockup_all_cpu_backtrace", "1"}, {"/proc/sys/fs/mount-max", "100"}, {"/proc/sys/vm/oom_dump_tasks", "0"}, {"/proc/sys/debug/exception-trace", "0"}, {"/proc/sys/kernel/printk", "7 4 1 3"}, {"/proc/sys/kernel/keys/gc_delay", "1"}, {"/proc/sys/vm/oom_kill_allocating_task", "1"}, {"/proc/sys/kernel/ctrl-alt-del", "0"}, {"/proc/sys/kernel/cad_pid", mypid}, }; for (size_t i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].name, files[i].data)) printf("write to %s failed: %s\n", files[i].name, strerror(errno)); } } #define SWAP_FILE "./swap-file" #define SWAP_FILE_SIZE (128 * 1000 * 1000) static void setup_swap() { swapoff(SWAP_FILE); unlink(SWAP_FILE); int fd = open(SWAP_FILE, O_CREAT | O_WRONLY | O_CLOEXEC, 0600); if (fd == -1) { exit(1); return; } fallocate(fd, FALLOC_FL_ZERO_RANGE, 0, SWAP_FILE_SIZE); close(fd); char cmdline[64]; sprintf(cmdline, "mkswap %s", SWAP_FILE); if (runcmdline(cmdline)) { exit(1); return; } if (swapon(SWAP_FILE, SWAP_FLAG_PREFER) == 1) { exit(1); return; } } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { int i, call, thread; for (call = 0; call < 6; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); if (call == 4) break; event_timedwait(&th->done, 50); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { setup_loop(); int iter = 0; for (;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5000) continue; kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: NONFAILING(*(uint32_t*)0x20000340 = 2); NONFAILING(*(uint32_t*)0x20000344 = 4); NONFAILING(*(uint32_t*)0x20000348 = 8); NONFAILING(*(uint32_t*)0x2000034c = 1); NONFAILING(*(uint32_t*)0x20000350 = 0x80); NONFAILING(*(uint32_t*)0x20000354 = 0); NONFAILING(*(uint32_t*)0x20000358 = 0); NONFAILING(memset((void*)0x2000035c, 0, 16)); NONFAILING(*(uint32_t*)0x2000036c = 0); NONFAILING(*(uint32_t*)0x20000370 = 0); NONFAILING(*(uint32_t*)0x20000374 = 0); NONFAILING(*(uint32_t*)0x20000378 = 0); NONFAILING(*(uint32_t*)0x2000037c = 0); NONFAILING(*(uint64_t*)0x20000380 = 0); res = syscall(__NR_bpf, /*cmd=*/0ul, /*arg=*/0x20000340ul, /*size=*/0x48ul); if (res != -1) r[0] = res; break; case 1: NONFAILING(*(uint32_t*)0x20000480 = r[0]); syscall(__NR_bpf, /*cmd=*/0x16ul, /*arg=*/0x20000480ul, /*size=*/4ul); break; case 2: NONFAILING(*(uint32_t*)0x200004c0 = 3); NONFAILING(*(uint32_t*)0x200004c4 = 0x10); NONFAILING(*(uint64_t*)0x200004c8 = 0x20000580); NONFAILING(*(uint8_t*)0x20000580 = 0x18); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000581, 0, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000581, 0, 4, 4)); NONFAILING(*(uint16_t*)0x20000582 = 0); NONFAILING(*(uint32_t*)0x20000584 = 0); NONFAILING(*(uint8_t*)0x20000588 = 0); NONFAILING(*(uint8_t*)0x20000589 = 0); NONFAILING(*(uint16_t*)0x2000058a = 0); NONFAILING(*(uint32_t*)0x2000058c = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000590, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000590, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000590, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000591, 8, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000591, 0, 4, 4)); NONFAILING(*(uint16_t*)0x20000592 = 0); NONFAILING(*(uint32_t*)0x20000594 = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000598, 3, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000598, 3, 3, 2)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000598, 3, 5, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000599, 0xa, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000599, 8, 4, 4)); NONFAILING(*(uint16_t*)0x2000059a = 0xfff8); NONFAILING(*(uint32_t*)0x2000059c = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a0, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a0, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a0, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a1, 8, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a1, 0, 4, 4)); NONFAILING(*(uint16_t*)0x200005a2 = 0); NONFAILING(*(uint32_t*)0x200005a4 = 0x1234); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a8, 3, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a8, 3, 3, 2)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a8, 3, 5, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a9, 0xa, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005a9, 8, 4, 4)); NONFAILING(*(uint16_t*)0x200005aa = 0xfff0); NONFAILING(*(uint32_t*)0x200005ac = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b0, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b0, 1, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b0, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b1, 1, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b1, 0xa, 4, 4)); NONFAILING(*(uint16_t*)0x200005b2 = 0); NONFAILING(*(uint32_t*)0x200005b4 = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b8, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b8, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b8, 0, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b9, 1, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005b9, 0, 4, 4)); NONFAILING(*(uint16_t*)0x200005ba = 0); NONFAILING(*(uint32_t*)0x200005bc = 0xfffffff8); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c0, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c0, 1, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c0, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c1, 4, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c1, 0xa, 4, 4)); NONFAILING(*(uint16_t*)0x200005c2 = 0); NONFAILING(*(uint32_t*)0x200005c4 = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c8, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c8, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c8, 0, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c9, 4, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005c9, 0, 4, 4)); NONFAILING(*(uint16_t*)0x200005ca = 0); NONFAILING(*(uint32_t*)0x200005cc = 0xfffffff0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d0, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d0, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d0, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d1, 2, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d1, 0, 4, 4)); NONFAILING(*(uint16_t*)0x200005d2 = 0); NONFAILING(*(uint32_t*)0x200005d4 = 8); NONFAILING(*(uint8_t*)0x200005d8 = 0x18); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d9, 3, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005d9, 2, 4, 4)); NONFAILING(*(uint16_t*)0x200005da = 0); NONFAILING(*(uint32_t*)0x200005dc = r[0]); NONFAILING(*(uint8_t*)0x200005e0 = 0); NONFAILING(*(uint8_t*)0x200005e1 = 0); NONFAILING(*(uint16_t*)0x200005e2 = 0); NONFAILING(*(uint32_t*)0x200005e4 = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005e8, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005e8, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005e8, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005e9, 5, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x200005e9, 0, 4, 4)); NONFAILING(*(uint16_t*)0x200005ea = 0); NONFAILING(*(uint32_t*)0x200005ec = 8); NONFAILING(*(uint8_t*)0x200005f0 = 0x85); NONFAILING(*(uint8_t*)0x200005f1 = 0); NONFAILING(*(uint16_t*)0x200005f2 = 0); NONFAILING(*(uint32_t*)0x200005f4 = 0xa5); NONFAILING(*(uint8_t*)0x200005f8 = 0x95); NONFAILING(*(uint8_t*)0x200005f9 = 0); NONFAILING(*(uint16_t*)0x200005fa = 0); NONFAILING(*(uint32_t*)0x200005fc = 0); NONFAILING(*(uint64_t*)0x200004d0 = 0x20000600); NONFAILING(memcpy((void*)0x20000600, "GPL\000", 4)); NONFAILING(*(uint32_t*)0x200004d8 = 0); NONFAILING(*(uint32_t*)0x200004dc = 0); NONFAILING(*(uint64_t*)0x200004e0 = 0); NONFAILING(*(uint32_t*)0x200004e8 = 0); NONFAILING(*(uint32_t*)0x200004ec = 0); NONFAILING(memset((void*)0x200004f0, 0, 16)); NONFAILING(*(uint32_t*)0x20000500 = 0); NONFAILING(*(uint32_t*)0x20000504 = 0); NONFAILING(*(uint32_t*)0x20000508 = 0); NONFAILING(*(uint32_t*)0x2000050c = 0); NONFAILING(*(uint64_t*)0x20000510 = 0); NONFAILING(*(uint32_t*)0x20000518 = 0); NONFAILING(*(uint32_t*)0x2000051c = 0); NONFAILING(*(uint64_t*)0x20000520 = 0); NONFAILING(*(uint32_t*)0x20000528 = 0); NONFAILING(*(uint32_t*)0x2000052c = 0); NONFAILING(*(uint32_t*)0x20000530 = 0); NONFAILING(*(uint32_t*)0x20000534 = 0); NONFAILING(*(uint64_t*)0x20000538 = 0); NONFAILING(*(uint64_t*)0x20000540 = 0); NONFAILING(*(uint32_t*)0x20000548 = 0); NONFAILING(*(uint32_t*)0x2000054c = 0); res = syscall(__NR_bpf, /*cmd=*/5ul, /*arg=*/0x200004c0ul, /*size=*/0xa0ul); if (res != -1) r[1] = res; break; case 3: NONFAILING(*(uint32_t*)0x20000740 = 3); NONFAILING(*(uint32_t*)0x20000744 = 4); NONFAILING(*(uint32_t*)0x20000748 = 4); NONFAILING(*(uint32_t*)0x2000074c = 0xa); NONFAILING(*(uint32_t*)0x20000750 = 0); NONFAILING(*(uint32_t*)0x20000754 = 0); NONFAILING(*(uint32_t*)0x20000758 = 0); NONFAILING(memset((void*)0x2000075c, 0, 16)); NONFAILING(*(uint32_t*)0x2000076c = 0); NONFAILING(*(uint32_t*)0x20000770 = 0); NONFAILING(*(uint32_t*)0x20000774 = 0); NONFAILING(*(uint32_t*)0x20000778 = 0); NONFAILING(*(uint32_t*)0x2000077c = 0); NONFAILING(*(uint64_t*)0x20000780 = 0); res = syscall(__NR_bpf, /*cmd=*/0ul, /*arg=*/0x20000740ul, /*size=*/0x48ul); if (res != -1) r[2] = res; break; case 4: NONFAILING(*(uint32_t*)0x200007c0 = r[2]); NONFAILING(*(uint64_t*)0x200007c8 = 0x20000800); NONFAILING(*(uint32_t*)0x20000800 = 0); NONFAILING(*(uint64_t*)0x200007d0 = 0x20000840); NONFAILING(*(uint32_t*)0x20000840 = r[1]); NONFAILING(*(uint64_t*)0x200007d8 = 0); syscall(__NR_bpf, /*cmd=*/2ul, /*arg=*/0x200007c0ul, /*size=*/0x1cul); break; case 5: NONFAILING(*(uint32_t*)0x20000880 = 3); NONFAILING(*(uint32_t*)0x20000884 = 8); NONFAILING(*(uint64_t*)0x20000888 = 0x20000940); NONFAILING(*(uint8_t*)0x20000940 = 0x18); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000941, 0, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000941, 0, 4, 4)); NONFAILING(*(uint16_t*)0x20000942 = 0); NONFAILING(*(uint32_t*)0x20000944 = 0); NONFAILING(*(uint8_t*)0x20000948 = 0); NONFAILING(*(uint8_t*)0x20000949 = 0); NONFAILING(*(uint16_t*)0x2000094a = 0); NONFAILING(*(uint32_t*)0x2000094c = 0); NONFAILING(*(uint8_t*)0x20000950 = 0x18); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000951, 2, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000951, 1, 4, 4)); NONFAILING(*(uint16_t*)0x20000952 = 0); NONFAILING(*(uint32_t*)0x20000954 = r[2]); NONFAILING(*(uint8_t*)0x20000958 = 0); NONFAILING(*(uint8_t*)0x20000959 = 0); NONFAILING(*(uint16_t*)0x2000095a = 0); NONFAILING(*(uint32_t*)0x2000095c = 0); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000960, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000960, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000960, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000961, 3, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000961, 0, 4, 4)); NONFAILING(*(uint16_t*)0x20000962 = 0); NONFAILING(*(uint32_t*)0x20000964 = 0); NONFAILING(*(uint8_t*)0x20000968 = 0x85); NONFAILING(*(uint8_t*)0x20000969 = 0); NONFAILING(*(uint16_t*)0x2000096a = 0); NONFAILING(*(uint32_t*)0x2000096c = 0xc); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000970, 7, 0, 3)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000970, 0, 3, 1)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000970, 0xb, 4, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000971, 0, 0, 4)); NONFAILING(STORE_BY_BITMASK(uint8_t, , 0x20000971, 0, 4, 4)); NONFAILING(*(uint16_t*)0x20000972 = 0); NONFAILING(*(uint32_t*)0x20000974 = 0); NONFAILING(*(uint8_t*)0x20000978 = 0x95); NONFAILING(*(uint8_t*)0x20000979 = 0); NONFAILING(*(uint16_t*)0x2000097a = 0); NONFAILING(*(uint32_t*)0x2000097c = 0); NONFAILING(*(uint64_t*)0x20000890 = 0x20000980); NONFAILING(memcpy((void*)0x20000980, "GPL\000", 4)); NONFAILING(*(uint32_t*)0x20000898 = 0); NONFAILING(*(uint32_t*)0x2000089c = 0); NONFAILING(*(uint64_t*)0x200008a0 = 0); NONFAILING(*(uint32_t*)0x200008a8 = 0); NONFAILING(*(uint32_t*)0x200008ac = 0); NONFAILING(memset((void*)0x200008b0, 0, 16)); NONFAILING(*(uint32_t*)0x200008c0 = 0); NONFAILING(*(uint32_t*)0x200008c4 = 0); NONFAILING(*(uint32_t*)0x200008c8 = 0); NONFAILING(*(uint32_t*)0x200008cc = 0); NONFAILING(*(uint64_t*)0x200008d0 = 0); NONFAILING(*(uint32_t*)0x200008d8 = 0); NONFAILING(*(uint32_t*)0x200008dc = 0); NONFAILING(*(uint64_t*)0x200008e0 = 0); NONFAILING(*(uint32_t*)0x200008e8 = 0); NONFAILING(*(uint32_t*)0x200008ec = 0); NONFAILING(*(uint32_t*)0x200008f0 = 0); NONFAILING(*(uint32_t*)0x200008f4 = 0); NONFAILING(*(uint64_t*)0x200008f8 = 0); NONFAILING(*(uint64_t*)0x20000900 = 0); NONFAILING(*(uint32_t*)0x20000908 = 0); NONFAILING(*(uint32_t*)0x2000090c = 0); syscall(__NR_bpf, /*cmd=*/5ul, /*arg=*/0x20000880ul, /*size=*/0xa0ul); break; } } int main(void) { syscall(__NR_mmap, /*addr=*/0x1ffff000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=*/0x32ul, /*fd=*/-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x20000000ul, /*len=*/0x1000000ul, /*prot=*/7ul, /*flags=*/0x32ul, /*fd=*/-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x21000000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=*/0x32ul, /*fd=*/-1, /*offset=*/0ul); setup_sysctl(); setup_cgroups(); setup_usb(); setup_swap(); install_segv_handler(); use_temporary_dir(); do_sandbox_none(); return 0; }