// https://syzkaller.appspot.com/bug?id=edd352dca9f17e84e56cd73218fadc6359dd1040 // autogenerated by syzkaller (http://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include __attribute__((noreturn)) static void doexit(int status) { volatile unsigned i; syscall(__NR_exit_group, status); for (i = 0;; i++) { } } #include #include #include #include #include static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* uctx) { uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; if (__atomic_load_n(&skip_segv, __ATOMIC_RELAXED) && (addr < prog_start || addr > prog_end)) { _longjmp(segv_env, 1); } doexit(sig); } static void install_segv_handler() { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ { \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ } static void test(); void loop() { while (1) { test(); } } struct thread_t { int created, running, call; pthread_t th; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static int collide; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { while (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &th->running, FUTEX_WAIT, 0, 0); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 0, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); } return 0; } static void execute(int num_calls) { int call, thread; running = 0; for (call = 0; call < num_calls; call++) { for (thread = 0; thread < sizeof(threads) / sizeof(threads[0]); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); pthread_create(&th->th, &attr, thr, th); } if (!__atomic_load_n(&th->running, __ATOMIC_ACQUIRE)) { th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); __atomic_store_n(&th->running, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &th->running, FUTEX_WAKE); if (collide && call % 2) break; struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = 20 * 1000 * 1000; syscall(SYS_futex, &th->running, FUTEX_WAIT, 1, &ts); if (running) usleep((call == num_calls - 1) ? 10000 : 1000); break; } } } } uint64_t r[2] = {0xffffffffffffffff, 0xffffffff}; void execute_call(int call) { long res; switch (call) { case 0: NONFAILING(memcpy((void*)0x20000180, "/dev/infiniband/rdma_cm", 24)); res = syscall(__NR_openat, 0xffffffffffffff9c, 0x20000180, 2, 0); if (res != -1) r[0] = res; break; case 1: NONFAILING(*(uint32_t*)0x200000c0 = 0); NONFAILING(*(uint16_t*)0x200000c4 = 0x18); NONFAILING(*(uint16_t*)0x200000c6 = 0xfa00); NONFAILING(*(uint64_t*)0x200000c8 = 3); NONFAILING(*(uint64_t*)0x200000d0 = 0x20000080); NONFAILING(*(uint16_t*)0x200000d8 = 2); NONFAILING(*(uint8_t*)0x200000da = 0); NONFAILING(*(uint8_t*)0x200000db = 0); NONFAILING(*(uint8_t*)0x200000dc = 0); NONFAILING(*(uint8_t*)0x200000dd = 0); NONFAILING(*(uint8_t*)0x200000de = 0); NONFAILING(*(uint8_t*)0x200000df = 0); res = syscall(__NR_write, r[0], 0x200000c0, 0x20); if (res != -1) NONFAILING(r[1] = *(uint32_t*)0x20000080); break; case 2: NONFAILING(*(uint32_t*)0x20000440 = 9); NONFAILING(*(uint16_t*)0x20000444 = 0x108); NONFAILING(*(uint16_t*)0x20000446 = 0xfa00); NONFAILING(*(uint32_t*)0x20000448 = r[1]); NONFAILING(*(uint8_t*)0x2000044c = 0x77); NONFAILING(memcpy((void*)0x2000044d, "\xaf\x7c\x99", 3)); NONFAILING(memcpy( (void*)0x20000450, "\x86\x46\x86\x93\xe3\x0a\x76\x5d\xf6\x23\x39\x73\xfa\x01\x38\x6e\xa8" "\xbf\xf2\xcf\xbb\xe5\xe3\x38\x1b\x8c\x0f\xd8\x26\x74\x9d\xe0\x13\x2a" "\xbf\xff\x4e\xdc\xb7\x3b\xf4\x36\x6e\x77\x02\x31\x5b\xa2\x9d\x8f\x35" "\x67\xf1\x5f\x61\x3c\xe6\x67\x39\xf7\xeb\x62\x46\x63\xed\x20\x1e\xd5" "\x80\x41\xc5\xd5\xf8\x76\x8c\x59\x0e\x59\x88\xac\x89\x7b\xea\xb8\xf1" "\xf2\xc1\x1f\xd8\x48\xf3\x86\x4a\xdd\x1c\x7b\xc9\x12\x9e\x9a\xba\xc4" "\x3d\x27\x1c\x98\x04\x73\x0e\xbb\xf0\xad\xca\xa5\x5a\x5a\x31\x16\x0c" "\x78\xc1\x5b\xfe\x68\x9f\xa9\xcd\xa5\x66\x54\xff\x81\xbe\x0b\x54\x98" "\xcd\xe6\xac\xcf\x4a\xdb\x65\xbd\x06\x88\x2b\xc6\x66\xe8\x71\x5e\xa1" "\x0d\x2e\xdc\xe6\x03\xbe\xa7\xa3\x56\xb9\x90\x23\x05\x5a\xe6\xc6\x43" "\xd9\x85\xb2\x6a\xa9\x15\x1d\x5f\x79\x50\x38\x2e\xd8\xf1\x03\xa8\x94" "\xcc\x39\xbc\x5a\x70\xff\x6a\x9c\xf6\x05\x06\x0e\x17\x67\x35\x43\x76" "\xc0\x2d\xfc\xa8\x59\x65\x2a\xae\x7a\x2b\x2d\xfa\x9e\x55\xab\xf2\x7f" "\x5b\xd7\x4f\x80\xf9\xe3\x66\x32\xe8\x7e\x00\xd1\x49\x04\x96\x59\x12" "\x94\xa9\x9c\x59\x6a\x57\x27\x7b\x58\x99\x11\x4e\x9a\x16\x23\xa1\xfc" "\x3e", 256)); syscall(__NR_write, r[0], 0x20000440, 0x110); break; case 3: syscall(__NR_close, r[0]); break; } } void test() { execute(4); collide = 1; execute(4); } int main() { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); install_segv_handler(); for (;;) { loop(); } }