// https://syzkaller.appspot.com/bug?id=ba05259158f35e969fff5418080482392e23ccf9 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned long long procid; static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } #define USB_MAX_EP_NUM 32 struct usb_device_index { struct usb_device_descriptor* dev; struct usb_config_descriptor* config; unsigned config_length; struct usb_interface_descriptor* iface; struct usb_endpoint_descriptor* eps[USB_MAX_EP_NUM]; unsigned eps_num; }; static bool parse_usb_descriptor(char* buffer, size_t length, struct usb_device_index* index) { if (length < sizeof(*index->dev) + sizeof(*index->config) + sizeof(*index->iface)) return false; index->dev = (struct usb_device_descriptor*)buffer; index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev)); index->config_length = length - sizeof(*index->dev); index->iface = (struct usb_interface_descriptor*)(buffer + sizeof(*index->dev) + sizeof(*index->config)); index->eps_num = 0; size_t offset = 0; while (true) { if (offset == length) break; if (offset + 1 < length) break; uint8_t length = buffer[offset]; uint8_t type = buffer[offset + 1]; if (type == USB_DT_ENDPOINT) { index->eps[index->eps_num] = (struct usb_endpoint_descriptor*)(buffer + offset); index->eps_num++; } if (index->eps_num == USB_MAX_EP_NUM) break; offset += length; } return true; } enum usb_fuzzer_event_type { USB_FUZZER_EVENT_INVALID, USB_FUZZER_EVENT_CONNECT, USB_FUZZER_EVENT_DISCONNECT, USB_FUZZER_EVENT_SUSPEND, USB_FUZZER_EVENT_RESUME, USB_FUZZER_EVENT_CONTROL, }; struct usb_fuzzer_event { uint32_t type; uint32_t length; char data[0]; }; struct usb_fuzzer_init { uint64_t speed; const char* driver_name; const char* device_name; }; struct usb_fuzzer_ep_io { uint16_t ep; uint16_t flags; uint32_t length; char data[0]; }; #define USB_FUZZER_IOCTL_INIT _IOW('U', 0, struct usb_fuzzer_init) #define USB_FUZZER_IOCTL_RUN _IO('U', 1) #define USB_FUZZER_IOCTL_EP0_READ _IOWR('U', 2, struct usb_fuzzer_event) #define USB_FUZZER_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_fuzzer_ep_io) #define USB_FUZZER_IOCTL_EP_ENABLE _IOW('U', 4, struct usb_endpoint_descriptor) #define USB_FUZZER_IOCTL_EP_WRITE _IOW('U', 6, struct usb_fuzzer_ep_io) #define USB_FUZZER_IOCTL_CONFIGURE _IO('U', 8) #define USB_FUZZER_IOCTL_VBUS_DRAW _IOW('U', 9, uint32_t) int usb_fuzzer_open() { return open("/sys/kernel/debug/usb-fuzzer", O_RDWR); } int usb_fuzzer_init(int fd, uint32_t speed, const char* driver, const char* device) { struct usb_fuzzer_init arg; arg.speed = speed; arg.driver_name = driver; arg.device_name = device; return ioctl(fd, USB_FUZZER_IOCTL_INIT, &arg); } int usb_fuzzer_run(int fd) { return ioctl(fd, USB_FUZZER_IOCTL_RUN, 0); } int usb_fuzzer_ep0_read(int fd, struct usb_fuzzer_event* event) { return ioctl(fd, USB_FUZZER_IOCTL_EP0_READ, event); } int usb_fuzzer_ep0_write(int fd, struct usb_fuzzer_ep_io* io) { return ioctl(fd, USB_FUZZER_IOCTL_EP0_WRITE, io); } int usb_fuzzer_ep_write(int fd, struct usb_fuzzer_ep_io* io) { return ioctl(fd, USB_FUZZER_IOCTL_EP_WRITE, io); } int usb_fuzzer_ep_enable(int fd, struct usb_endpoint_descriptor* desc) { return ioctl(fd, USB_FUZZER_IOCTL_EP_ENABLE, desc); } int usb_fuzzer_configure(int fd) { return ioctl(fd, USB_FUZZER_IOCTL_CONFIGURE, 0); } int usb_fuzzer_vbus_draw(int fd, uint32_t power) { return ioctl(fd, USB_FUZZER_IOCTL_VBUS_DRAW, power); } #define USB_MAX_PACKET_SIZE 1024 struct usb_fuzzer_control_event { struct usb_fuzzer_event inner; struct usb_ctrlrequest ctrl; }; struct usb_fuzzer_ep_io_data { struct usb_fuzzer_ep_io inner; char data[USB_MAX_PACKET_SIZE]; }; struct vusb_connect_string_descriptor { uint32_t len; char* str; } __attribute__((packed)); struct vusb_connect_descriptors { uint32_t qual_len; char* qual; uint32_t bos_len; char* bos; uint32_t strs_len; struct vusb_connect_string_descriptor strs[0]; } __attribute__((packed)); static volatile long syz_usb_connect(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { int64_t speed = a0; int64_t dev_len = a1; char* dev = (char*)a2; struct vusb_connect_descriptors* conn_descs = (struct vusb_connect_descriptors*)a3; if (!dev) return -1; struct usb_device_index index; memset(&index, 0, sizeof(index)); int rv = parse_usb_descriptor(dev, dev_len, &index); if (!rv) return -1; int fd = usb_fuzzer_open(); if (fd < 0) return -1; char device[32]; sprintf(&device[0], "dummy_udc.%llu", procid); rv = usb_fuzzer_init(fd, speed, "dummy_udc", &device[0]); if (rv < 0) return -1; rv = usb_fuzzer_run(fd); if (rv < 0) return -1; bool done = false; while (!done) { char* response_data = NULL; uint32_t response_length = 0; unsigned ep; uint8_t str_idx; struct usb_fuzzer_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_event*)&event); if (rv < 0) return -1; if (event.inner.type != USB_FUZZER_EVENT_CONTROL) continue; switch (event.ctrl.bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (event.ctrl.bRequest) { case USB_REQ_GET_DESCRIPTOR: switch (event.ctrl.wValue >> 8) { case USB_DT_DEVICE: response_data = (char*)index.dev; response_length = sizeof(*index.dev); goto reply; case USB_DT_CONFIG: response_data = (char*)index.config; response_length = index.config_length; goto reply; case USB_DT_STRING: str_idx = (uint8_t)event.ctrl.wValue; if (str_idx >= conn_descs->strs_len) goto reply; response_data = conn_descs->strs[str_idx].str; response_length = conn_descs->strs[str_idx].len; goto reply; case USB_DT_BOS: response_data = conn_descs->bos; response_length = conn_descs->bos_len; goto reply; case USB_DT_DEVICE_QUALIFIER: response_data = conn_descs->qual; response_length = conn_descs->qual_len; goto reply; default: exit(1); continue; } break; case USB_REQ_SET_CONFIGURATION: rv = usb_fuzzer_vbus_draw(fd, index.config->bMaxPower); if (rv < 0) return -1; rv = usb_fuzzer_configure(fd); if (rv < 0) return -1; for (ep = 0; ep < index.eps_num; ep++) { rv = usb_fuzzer_ep_enable(fd, index.eps[ep]); if (rv < 0) exit(1); } done = true; goto reply; default: exit(1); continue; } break; default: exit(1); continue; } struct usb_fuzzer_ep_io_data response; reply: response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); if (event.ctrl.wLength < response.inner.length) response.inner.length = event.ctrl.wLength; usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response); } sleep_ms(200); return fd; } struct vusb_descriptor { uint8_t req_type; uint8_t desc_type; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_descriptors { uint32_t len; struct vusb_descriptor* generic; struct vusb_descriptor* descs[0]; } __attribute__((packed)); struct vusb_response { uint8_t type; uint8_t req; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_responses { uint32_t len; struct vusb_response* generic; struct vusb_response* resps[0]; } __attribute__((packed)); static volatile long syz_usb_control_io(volatile long a0, volatile long a1, volatile long a2) { int fd = a0; struct vusb_descriptors* descs = (struct vusb_descriptors*)a1; struct vusb_responses* resps = (struct vusb_responses*)a2; struct usb_fuzzer_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); int rv = usb_fuzzer_ep0_read(fd, (struct usb_fuzzer_event*)&event); if (rv < 0) return -1; if (event.inner.type != USB_FUZZER_EVENT_CONTROL) return -1; uint8_t req = event.ctrl.bRequest; uint8_t req_type = event.ctrl.bRequestType & USB_TYPE_MASK; uint8_t desc_type = event.ctrl.wValue >> 8; char* response_data = NULL; uint32_t response_length = 0; if (req == USB_REQ_GET_DESCRIPTOR) { int i; int descs_num = (descs->len - offsetof(struct vusb_descriptors, descs)) / sizeof(descs->descs[0]); for (i = 0; i < descs_num; i++) { struct vusb_descriptor* desc = descs->descs[i]; if (!desc) continue; if (desc->req_type == req_type && desc->desc_type == desc_type) { response_length = desc->len; if (response_length != 0) response_data = &desc->data[0]; goto reply; } } if (descs->generic) { response_data = &descs->generic->data[0]; response_length = descs->generic->len; goto reply; } } else { int i; int resps_num = (resps->len - offsetof(struct vusb_responses, resps)) / sizeof(resps->resps[0]); for (i = 0; i < resps_num; i++) { struct vusb_response* resp = resps->resps[i]; if (!resp) continue; if (resp->type == req_type && resp->req == req) { response_length = resp->len; if (response_length != 0) response_data = &resp->data[0]; goto reply; } } if (resps->generic) { response_data = &resps->generic->data[0]; response_length = resps->generic->len; goto reply; } } return -1; struct usb_fuzzer_ep_io_data response; reply: response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); if (event.ctrl.wLength < response.inner.length) response.inner.length = event.ctrl.wLength; usb_fuzzer_ep0_write(fd, (struct usb_fuzzer_ep_io*)&response); sleep_ms(200); return 0; } static volatile long syz_usb_disconnect(volatile long a0) { int fd = a0; int rv = close(fd); sleep_ms(200); return rv; } #define XT_TABLE_SIZE 1536 #define XT_MAX_ENTRIES 10 struct xt_counters { uint64_t pcnt, bcnt; }; struct ipt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_entries; unsigned int size; }; struct ipt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct ipt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[5]; unsigned int underflow[5]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct ipt_table_desc { const char* name; struct ipt_getinfo info; struct ipt_replace replace; }; static struct ipt_table_desc ipv4_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; static struct ipt_table_desc ipv6_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "mangle"}, {.name = "raw"}, {.name = "security"}, }; #define IPT_BASE_CTL 64 #define IPT_SO_SET_REPLACE (IPT_BASE_CTL) #define IPT_SO_GET_INFO (IPT_BASE_CTL) #define IPT_SO_GET_ENTRIES (IPT_BASE_CTL + 1) struct arpt_getinfo { char name[32]; unsigned int valid_hooks; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_entries; unsigned int size; }; struct arpt_get_entries { char name[32]; unsigned int size; void* entrytable[XT_TABLE_SIZE / sizeof(void*)]; }; struct arpt_replace { char name[32]; unsigned int valid_hooks; unsigned int num_entries; unsigned int size; unsigned int hook_entry[3]; unsigned int underflow[3]; unsigned int num_counters; struct xt_counters* counters; char entrytable[XT_TABLE_SIZE]; }; struct arpt_table_desc { const char* name; struct arpt_getinfo info; struct arpt_replace replace; }; static struct arpt_table_desc arpt_tables[] = { {.name = "filter"}, }; #define ARPT_BASE_CTL 96 #define ARPT_SO_SET_REPLACE (ARPT_BASE_CTL) #define ARPT_SO_GET_INFO (ARPT_BASE_CTL) #define ARPT_SO_GET_ENTRIES (ARPT_BASE_CTL + 1) static void checkpoint_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct ipt_get_entries entries; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_iptables(struct ipt_table_desc* tables, int num_tables, int family, int level) { struct xt_counters counters[XT_MAX_ENTRIES]; struct ipt_get_entries entries; struct ipt_getinfo info; socklen_t optlen; int fd, i; fd = socket(family, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < num_tables; i++) { struct ipt_table_desc* table = &tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, level, IPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, level, IPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, level, IPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_arptables(void) { struct arpt_get_entries entries; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; strcpy(table->info.name, table->name); strcpy(table->replace.name, table->name); optlen = sizeof(table->info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &table->info, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->info.size > sizeof(table->replace.entrytable)) exit(1); if (table->info.num_entries > XT_MAX_ENTRIES) exit(1); memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + table->info.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); table->replace.valid_hooks = table->info.valid_hooks; table->replace.num_entries = table->info.num_entries; table->replace.size = table->info.size; memcpy(table->replace.hook_entry, table->info.hook_entry, sizeof(table->replace.hook_entry)); memcpy(table->replace.underflow, table->info.underflow, sizeof(table->replace.underflow)); memcpy(table->replace.entrytable, entries.entrytable, table->info.size); } close(fd); } static void reset_arptables() { struct xt_counters counters[XT_MAX_ENTRIES]; struct arpt_get_entries entries; struct arpt_getinfo info; socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(arpt_tables) / sizeof(arpt_tables[0]); i++) { struct arpt_table_desc* table = &arpt_tables[i]; if (table->info.valid_hooks == 0) continue; memset(&info, 0, sizeof(info)); strcpy(info.name, table->name); optlen = sizeof(info); if (getsockopt(fd, SOL_IP, ARPT_SO_GET_INFO, &info, &optlen)) exit(1); if (memcmp(&table->info, &info, sizeof(table->info)) == 0) { memset(&entries, 0, sizeof(entries)); strcpy(entries.name, table->name); entries.size = table->info.size; optlen = sizeof(entries) - sizeof(entries.entrytable) + entries.size; if (getsockopt(fd, SOL_IP, ARPT_SO_GET_ENTRIES, &entries, &optlen)) exit(1); if (memcmp(table->replace.entrytable, entries.entrytable, table->info.size) == 0) continue; } else { } table->replace.num_counters = info.num_entries; table->replace.counters = counters; optlen = sizeof(table->replace) - sizeof(table->replace.entrytable) + table->replace.size; if (setsockopt(fd, SOL_IP, ARPT_SO_SET_REPLACE, &table->replace, optlen)) exit(1); } close(fd); } #define NF_BR_NUMHOOKS 6 #define EBT_TABLE_MAXNAMELEN 32 #define EBT_CHAIN_MAXNAMELEN 32 #define EBT_BASE_CTL 128 #define EBT_SO_SET_ENTRIES (EBT_BASE_CTL) #define EBT_SO_GET_INFO (EBT_BASE_CTL) #define EBT_SO_GET_ENTRIES (EBT_SO_GET_INFO + 1) #define EBT_SO_GET_INIT_INFO (EBT_SO_GET_ENTRIES + 1) #define EBT_SO_GET_INIT_ENTRIES (EBT_SO_GET_INIT_INFO + 1) struct ebt_replace { char name[EBT_TABLE_MAXNAMELEN]; unsigned int valid_hooks; unsigned int nentries; unsigned int entries_size; struct ebt_entries* hook_entry[NF_BR_NUMHOOKS]; unsigned int num_counters; struct ebt_counter* counters; char* entries; }; struct ebt_entries { unsigned int distinguisher; char name[EBT_CHAIN_MAXNAMELEN]; unsigned int counter_offset; int policy; unsigned int nentries; char data[0] __attribute__((aligned(__alignof__(struct ebt_replace)))); }; struct ebt_table_desc { const char* name; struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; }; static struct ebt_table_desc ebt_tables[] = { {.name = "filter"}, {.name = "nat"}, {.name = "broute"}, }; static void checkpoint_ebtables(void) { socklen_t optlen; unsigned i; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; strcpy(table->replace.name, table->name); optlen = sizeof(table->replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_INFO, &table->replace, &optlen)) { switch (errno) { case EPERM: case ENOENT: case ENOPROTOOPT: continue; } exit(1); } if (table->replace.entries_size > sizeof(table->entrytable)) exit(1); table->replace.num_counters = 0; table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_INIT_ENTRIES, &table->replace, &optlen)) exit(1); } close(fd); } static void reset_ebtables() { struct ebt_replace replace; char entrytable[XT_TABLE_SIZE]; socklen_t optlen; unsigned i, j, h; int fd; fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); if (fd == -1) { switch (errno) { case EAFNOSUPPORT: case ENOPROTOOPT: return; } exit(1); } for (i = 0; i < sizeof(ebt_tables) / sizeof(ebt_tables[0]); i++) { struct ebt_table_desc* table = &ebt_tables[i]; if (table->replace.valid_hooks == 0) continue; memset(&replace, 0, sizeof(replace)); strcpy(replace.name, table->name); optlen = sizeof(replace); if (getsockopt(fd, SOL_IP, EBT_SO_GET_INFO, &replace, &optlen)) exit(1); replace.num_counters = 0; table->replace.entries = 0; for (h = 0; h < NF_BR_NUMHOOKS; h++) table->replace.hook_entry[h] = 0; if (memcmp(&table->replace, &replace, sizeof(table->replace)) == 0) { memset(&entrytable, 0, sizeof(entrytable)); replace.entries = entrytable; optlen = sizeof(replace) + replace.entries_size; if (getsockopt(fd, SOL_IP, EBT_SO_GET_ENTRIES, &replace, &optlen)) exit(1); if (memcmp(table->entrytable, entrytable, replace.entries_size) == 0) continue; } for (j = 0, h = 0; h < NF_BR_NUMHOOKS; h++) { if (table->replace.valid_hooks & (1 << h)) { table->replace.hook_entry[h] = (struct ebt_entries*)table->entrytable + j; j++; } } table->replace.entries = table->entrytable; optlen = sizeof(table->replace) + table->replace.entries_size; if (setsockopt(fd, SOL_IP, EBT_SO_SET_ENTRIES, &table->replace, optlen)) exit(1); } close(fd); } static void checkpoint_net_namespace(void) { checkpoint_ebtables(); checkpoint_arptables(); checkpoint_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); checkpoint_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void reset_net_namespace(void) { reset_ebtables(); reset_arptables(); reset_iptables(ipv4_tables, sizeof(ipv4_tables) / sizeof(ipv4_tables[0]), AF_INET, SOL_IP); reset_iptables(ipv6_tables, sizeof(ipv6_tables) / sizeof(ipv6_tables[0]), AF_INET6, SOL_IPV6); } static void setup_common() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); setsid(); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 0; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); setup_common(); sandbox_common(); if (unshare(CLONE_NEWNET)) { } loop(); exit(1); } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { DIR* dp; struct dirent* ep; int iter = 0; retry: while (umount2(dir, MNT_DETACH) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, MNT_DETACH) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, MNT_DETACH)) exit(1); } } closedir(dp); int i; for (i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, MNT_DETACH)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); int i; for (i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } #define SYZ_HAVE_SETUP_LOOP 1 static void setup_loop() { checkpoint_net_namespace(); } #define SYZ_HAVE_RESET_LOOP 1 static void reset_loop() { reset_net_namespace(); } #define SYZ_HAVE_SETUP_TEST 1 static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); } #define SYZ_HAVE_CLOSE_FDS 1 static void close_fds() { int fd; for (fd = 3; fd < 30; fd++) close(fd); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { setup_loop(); int iter; for (iter = 0;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); reset_loop(); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); close_fds(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; sleep_ms(1); if (current_time_ms() - start < 5 * 1000) continue; kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[1] = {0xffffffffffffffff}; void execute_one(void) { long res = 0; *(uint8_t*)0x20000000 = 0x12; *(uint8_t*)0x20000001 = 1; *(uint16_t*)0x20000002 = 0; *(uint8_t*)0x20000004 = 0xac; *(uint8_t*)0x20000005 = 0xf1; *(uint8_t*)0x20000006 = 0xfb; *(uint8_t*)0x20000007 = 8; *(uint16_t*)0x20000008 = 0x10c4; *(uint16_t*)0x2000000a = 0x818a; *(uint16_t*)0x2000000c = 0x3710; *(uint8_t*)0x2000000e = 0; *(uint8_t*)0x2000000f = 0; *(uint8_t*)0x20000010 = 0; *(uint8_t*)0x20000011 = 1; *(uint8_t*)0x20000012 = 9; *(uint8_t*)0x20000013 = 2; *(uint16_t*)0x20000014 = 0x12; *(uint8_t*)0x20000016 = 1; *(uint8_t*)0x20000017 = 0; *(uint8_t*)0x20000018 = 0; *(uint8_t*)0x20000019 = 0; *(uint8_t*)0x2000001a = 0; *(uint8_t*)0x2000001b = 9; *(uint8_t*)0x2000001c = 4; *(uint8_t*)0x2000001d = 0xd2; *(uint8_t*)0x2000001e = 0; *(uint8_t*)0x2000001f = 0; *(uint8_t*)0x20000020 = 3; *(uint8_t*)0x20000021 = 0; *(uint8_t*)0x20000022 = 0; *(uint8_t*)0x20000023 = 0; res = syz_usb_connect(8, 0x24, 0x20000000, 0); if (res != -1) r[0] = res; *(uint32_t*)0x20000480 = 0x54; *(uint64_t*)0x20000484 = 0x20000200; *(uint8_t*)0x20000200 = 0x60; *(uint8_t*)0x20000201 = 0x1f; *(uint32_t*)0x20000202 = 0x2b; memcpy((void*)0x20000206, "\x85\xf9\xc6\xa8\x34\xc8\x83\x08\x68\xa5\xfa\x4d" "\x57\x63\x88\xbb\x73\xdc\xe6\xd7\x1c\xf2\xc7\x27" "\xe5\x55\xa3\xca\x3a\x92\x39\x50\x0d\x50\x0c\x9f" "\xdb\x89\xc3\xa7\x4f\x04\x19", 43); *(uint64_t*)0x2000048c = 0; *(uint64_t*)0x20000494 = 0x20000280; *(uint8_t*)0x20000280 = 0x20; *(uint8_t*)0x20000281 = 0xa; *(uint32_t*)0x20000282 = 1; *(uint8_t*)0x20000286 = 0x4a; *(uint64_t*)0x2000049c = 0; *(uint64_t*)0x200004a4 = 0; *(uint64_t*)0x200004ac = 0; *(uint64_t*)0x200004b4 = 0; *(uint64_t*)0x200004bc = 0; *(uint64_t*)0x200004c4 = 0; *(uint64_t*)0x200004cc = 0; syz_usb_control_io(r[0], 0, 0x20000480); syz_usb_disconnect(r[0]); } int main(void) { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); for (procid = 0; procid < 6; procid++) { if (fork() == 0) { use_temporary_dir(); do_sandbox_none(); } } sleep(1000000); return 0; }