// https://syzkaller.appspot.com/bug?id=ef5152c26600bb37247933e90d8c8e25e55c2de6 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef __NR_bpf #define __NR_bpf 321 #endif static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } #define BITMASK(bf_off, bf_len) (((1ull << (bf_len)) - 1) << (bf_off)) #define STORE_BY_BITMASK(type, htobe, addr, val, bf_off, bf_len) \ *(type*)(addr) = \ htobe((htobe(*(type*)(addr)) & ~BITMASK((bf_off), (bf_len))) | \ (((type)(val) << (bf_off)) & BITMASK((bf_off), (bf_len)))) struct csum_inet { uint32_t acc; }; static void csum_inet_init(struct csum_inet* csum) { csum->acc = 0; } static void csum_inet_update(struct csum_inet* csum, const uint8_t* data, size_t length) { if (length == 0) return; size_t i = 0; for (; i < length - 1; i += 2) csum->acc += *(uint16_t*)&data[i]; if (length & 1) csum->acc += le16toh((uint16_t)data[length - 1]); while (csum->acc > 0xffff) csum->acc = (csum->acc & 0xffff) + (csum->acc >> 16); } static uint16_t csum_inet_digest(struct csum_inet* csum) { return ~csum->acc; } typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[4096]; }; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; if (size > 0) memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len, bool dofail) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != (ssize_t)hdr->nlmsg_len) { if (dofail) exit(1); return -1; } n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (reply_len) *reply_len = 0; if (n < 0) { if (dofail) exit(1); return -1; } if (n < (ssize_t)sizeof(struct nlmsghdr)) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type == NLMSG_DONE) return 0; if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type != NLMSG_ERROR) { errno = EINVAL; if (dofail) exit(1); return -1; } errno = -((struct nlmsgerr*)(hdr + 1))->error; return -errno; } static int netlink_send(struct nlmsg* nlmsg, int sock) { return netlink_send_ext(nlmsg, sock, 0, NULL, true); } static int netlink_query_family_id(struct nlmsg* nlmsg, int sock, const char* family_name, bool dofail) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = CTRL_CMD_GETFAMILY; netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name, strnlen(family_name, GENL_NAMSIZ - 1) + 1); int n = 0; int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail); if (err < 0) { return -1; } uint16_t id = 0; struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) { id = *(uint16_t*)(attr + 1); break; } } if (!id) { errno = EINVAL; return -1; } recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); return id; } static void netlink_device_change(struct nlmsg* nlmsg, int sock, const char* name, bool up, const char* master, const void* mac, int macsize, const char* new_name) { struct ifinfomsg hdr; memset(&hdr, 0, sizeof(hdr)); if (up) hdr.ifi_flags = hdr.ifi_change = IFF_UP; hdr.ifi_index = if_nametoindex(name); netlink_init(nlmsg, RTM_NEWLINK, 0, &hdr, sizeof(hdr)); if (new_name) netlink_attr(nlmsg, IFLA_IFNAME, new_name, strlen(new_name)); if (master) { int ifindex = if_nametoindex(master); netlink_attr(nlmsg, IFLA_MASTER, &ifindex, sizeof(ifindex)); } if (macsize) netlink_attr(nlmsg, IFLA_ADDRESS, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static int netlink_add_addr(struct nlmsg* nlmsg, int sock, const char* dev, const void* addr, int addrsize) { struct ifaddrmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ifa_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ifa_prefixlen = addrsize == 4 ? 24 : 120; hdr.ifa_scope = RT_SCOPE_UNIVERSE; hdr.ifa_index = if_nametoindex(dev); netlink_init(nlmsg, RTM_NEWADDR, NLM_F_CREATE | NLM_F_REPLACE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, IFA_LOCAL, addr, addrsize); netlink_attr(nlmsg, IFA_ADDRESS, addr, addrsize); return netlink_send(nlmsg, sock); } static void netlink_add_addr4(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in_addr in_addr; inet_pton(AF_INET, addr, &in_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in_addr, sizeof(in_addr)); if (err < 0) { } } static void netlink_add_addr6(struct nlmsg* nlmsg, int sock, const char* dev, const char* addr) { struct in6_addr in6_addr; inet_pton(AF_INET6, addr, &in6_addr); int err = netlink_add_addr(nlmsg, sock, dev, &in6_addr, sizeof(in6_addr)); if (err < 0) { } } static void netlink_add_neigh(struct nlmsg* nlmsg, int sock, const char* name, const void* addr, int addrsize, const void* mac, int macsize) { struct ndmsg hdr; memset(&hdr, 0, sizeof(hdr)); hdr.ndm_family = addrsize == 4 ? AF_INET : AF_INET6; hdr.ndm_ifindex = if_nametoindex(name); hdr.ndm_state = NUD_PERMANENT; netlink_init(nlmsg, RTM_NEWNEIGH, NLM_F_EXCL | NLM_F_CREATE, &hdr, sizeof(hdr)); netlink_attr(nlmsg, NDA_DST, addr, addrsize); netlink_attr(nlmsg, NDA_LLADDR, mac, macsize); int err = netlink_send(nlmsg, sock); if (err < 0) { } } static struct nlmsg nlmsg; static int tunfd = -1; #define TUN_IFACE "syz_tun" #define LOCAL_MAC 0xaaaaaaaaaaaa #define REMOTE_MAC 0xaaaaaaaaaabb #define LOCAL_IPV4 "172.20.20.170" #define REMOTE_IPV4 "172.20.20.187" #define LOCAL_IPV6 "fe80::aa" #define REMOTE_IPV6 "fe80::bb" #define IFF_NAPI 0x0010 static void initialize_tun(void) { tunfd = open("/dev/net/tun", O_RDWR | O_NONBLOCK); if (tunfd == -1) { printf("tun: can't open /dev/net/tun: please enable CONFIG_TUN=y\n"); printf("otherwise fuzzing or reproducing might not work as intended\n"); return; } const int kTunFd = 200; if (dup2(tunfd, kTunFd) < 0) exit(1); close(tunfd); tunfd = kTunFd; struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strncpy(ifr.ifr_name, TUN_IFACE, IFNAMSIZ); ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(tunfd, TUNSETIFF, (void*)&ifr) < 0) { exit(1); } char sysctl[64]; sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/accept_dad", TUN_IFACE); write_file(sysctl, "0"); sprintf(sysctl, "/proc/sys/net/ipv6/conf/%s/router_solicitations", TUN_IFACE); write_file(sysctl, "0"); int sock = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); if (sock == -1) exit(1); netlink_add_addr4(&nlmsg, sock, TUN_IFACE, LOCAL_IPV4); netlink_add_addr6(&nlmsg, sock, TUN_IFACE, LOCAL_IPV6); uint64_t macaddr = REMOTE_MAC; struct in_addr in_addr; inet_pton(AF_INET, REMOTE_IPV4, &in_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in_addr, sizeof(in_addr), &macaddr, ETH_ALEN); struct in6_addr in6_addr; inet_pton(AF_INET6, REMOTE_IPV6, &in6_addr); netlink_add_neigh(&nlmsg, sock, TUN_IFACE, &in6_addr, sizeof(in6_addr), &macaddr, ETH_ALEN); macaddr = LOCAL_MAC; netlink_device_change(&nlmsg, sock, TUN_IFACE, true, 0, &macaddr, ETH_ALEN, NULL); close(sock); } static int read_tun(char* data, int size) { if (tunfd < 0) return -1; int rv = read(tunfd, data, size); if (rv < 0) { if (errno == EAGAIN || errno == EBADF || errno == EBADFD) return -1; exit(1); } return rv; } static long syz_emit_ethernet(volatile long a0, volatile long a1, volatile long a2) { if (tunfd < 0) return (uintptr_t)-1; uint32_t length = a0; char* data = (char*)a1; return write(tunfd, data, length); } static void flush_tun() { char data[1000]; while (read_tun(&data[0], sizeof(data)) != -1) { } } #define MAX_FDS 30 #define BTPROTO_HCI 1 #define ACL_LINK 1 #define SCAN_PAGE 2 typedef struct { uint8_t b[6]; } __attribute__((packed)) bdaddr_t; #define HCI_COMMAND_PKT 1 #define HCI_EVENT_PKT 4 #define HCI_VENDOR_PKT 0xff struct hci_command_hdr { uint16_t opcode; uint8_t plen; } __attribute__((packed)); struct hci_event_hdr { uint8_t evt; uint8_t plen; } __attribute__((packed)); #define HCI_EV_CONN_COMPLETE 0x03 struct hci_ev_conn_complete { uint8_t status; uint16_t handle; bdaddr_t bdaddr; uint8_t link_type; uint8_t encr_mode; } __attribute__((packed)); #define HCI_EV_CONN_REQUEST 0x04 struct hci_ev_conn_request { bdaddr_t bdaddr; uint8_t dev_class[3]; uint8_t link_type; } __attribute__((packed)); #define HCI_EV_REMOTE_FEATURES 0x0b struct hci_ev_remote_features { uint8_t status; uint16_t handle; uint8_t features[8]; } __attribute__((packed)); #define HCI_EV_CMD_COMPLETE 0x0e struct hci_ev_cmd_complete { uint8_t ncmd; uint16_t opcode; } __attribute__((packed)); #define HCI_OP_WRITE_SCAN_ENABLE 0x0c1a #define HCI_OP_READ_BUFFER_SIZE 0x1005 struct hci_rp_read_buffer_size { uint8_t status; uint16_t acl_mtu; uint8_t sco_mtu; uint16_t acl_max_pkt; uint16_t sco_max_pkt; } __attribute__((packed)); #define HCI_OP_READ_BD_ADDR 0x1009 struct hci_rp_read_bd_addr { uint8_t status; bdaddr_t bdaddr; } __attribute__((packed)); #define HCI_EV_LE_META 0x3e struct hci_ev_le_meta { uint8_t subevent; } __attribute__((packed)); #define HCI_EV_LE_CONN_COMPLETE 0x01 struct hci_ev_le_conn_complete { uint8_t status; uint16_t handle; uint8_t role; uint8_t bdaddr_type; bdaddr_t bdaddr; uint16_t interval; uint16_t latency; uint16_t supervision_timeout; uint8_t clk_accurancy; } __attribute__((packed)); struct hci_dev_req { uint16_t dev_id; uint32_t dev_opt; }; struct vhci_vendor_pkt_request { uint8_t type; uint8_t opcode; } __attribute__((packed)); struct vhci_pkt { uint8_t type; union { struct { uint8_t opcode; uint16_t id; } __attribute__((packed)) vendor_pkt; struct hci_command_hdr command_hdr; }; } __attribute__((packed)); #define HCIDEVUP _IOW('H', 201, int) #define HCISETSCAN _IOW('H', 221, int) static int vhci_fd = -1; static void rfkill_unblock_all() { int fd = open("/dev/rfkill", O_WRONLY); if (fd < 0) exit(1); struct rfkill_event event = {0}; event.idx = 0; event.type = RFKILL_TYPE_ALL; event.op = RFKILL_OP_CHANGE_ALL; event.soft = 0; event.hard = 0; if (write(fd, &event, sizeof(event)) < 0) exit(1); close(fd); } static void hci_send_event_packet(int fd, uint8_t evt, void* data, size_t data_len) { struct iovec iv[3]; struct hci_event_hdr hdr; hdr.evt = evt; hdr.plen = data_len; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = data; iv[2].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static void hci_send_event_cmd_complete(int fd, uint16_t opcode, void* data, size_t data_len) { struct iovec iv[4]; struct hci_event_hdr hdr; hdr.evt = HCI_EV_CMD_COMPLETE; hdr.plen = sizeof(struct hci_ev_cmd_complete) + data_len; struct hci_ev_cmd_complete evt_hdr; evt_hdr.ncmd = 1; evt_hdr.opcode = opcode; uint8_t type = HCI_EVENT_PKT; iv[0].iov_base = &type; iv[0].iov_len = sizeof(type); iv[1].iov_base = &hdr; iv[1].iov_len = sizeof(hdr); iv[2].iov_base = &evt_hdr; iv[2].iov_len = sizeof(evt_hdr); iv[3].iov_base = data; iv[3].iov_len = data_len; if (writev(fd, iv, sizeof(iv) / sizeof(struct iovec)) < 0) exit(1); } static bool process_command_pkt(int fd, char* buf, ssize_t buf_size) { struct hci_command_hdr* hdr = (struct hci_command_hdr*)buf; if (buf_size < (ssize_t)sizeof(struct hci_command_hdr) || hdr->plen != buf_size - sizeof(struct hci_command_hdr)) exit(1); switch (hdr->opcode) { case HCI_OP_WRITE_SCAN_ENABLE: { uint8_t status = 0; hci_send_event_cmd_complete(fd, hdr->opcode, &status, sizeof(status)); return true; } case HCI_OP_READ_BD_ADDR: { struct hci_rp_read_bd_addr rp = {0}; rp.status = 0; memset(&rp.bdaddr, 0xaa, 6); hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } case HCI_OP_READ_BUFFER_SIZE: { struct hci_rp_read_buffer_size rp = {0}; rp.status = 0; rp.acl_mtu = 1021; rp.sco_mtu = 96; rp.acl_max_pkt = 4; rp.sco_max_pkt = 6; hci_send_event_cmd_complete(fd, hdr->opcode, &rp, sizeof(rp)); return false; } } char dummy[0xf9] = {0}; hci_send_event_cmd_complete(fd, hdr->opcode, dummy, sizeof(dummy)); return false; } static void* event_thread(void* arg) { while (1) { char buf[1024] = {0}; ssize_t buf_size = read(vhci_fd, buf, sizeof(buf)); if (buf_size < 0) exit(1); if (buf_size > 0 && buf[0] == HCI_COMMAND_PKT) { if (process_command_pkt(vhci_fd, buf + 1, buf_size - 1)) break; } } return NULL; } #define HCI_HANDLE_1 200 #define HCI_HANDLE_2 201 #define HCI_PRIMARY 0 #define HCI_OP_RESET 0x0c03 static void initialize_vhci() { int hci_sock = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (hci_sock < 0) exit(1); vhci_fd = open("/dev/vhci", O_RDWR); if (vhci_fd == -1) exit(1); const int kVhciFd = 202; if (dup2(vhci_fd, kVhciFd) < 0) exit(1); close(vhci_fd); vhci_fd = kVhciFd; struct vhci_vendor_pkt_request vendor_pkt_req = {HCI_VENDOR_PKT, HCI_PRIMARY}; if (write(vhci_fd, &vendor_pkt_req, sizeof(vendor_pkt_req)) != sizeof(vendor_pkt_req)) exit(1); struct vhci_pkt vhci_pkt; if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt)) exit(1); if (vhci_pkt.type == HCI_COMMAND_PKT && vhci_pkt.command_hdr.opcode == HCI_OP_RESET) { char response[1] = {0}; hci_send_event_cmd_complete(vhci_fd, HCI_OP_RESET, response, sizeof(response)); if (read(vhci_fd, &vhci_pkt, sizeof(vhci_pkt)) != sizeof(vhci_pkt)) exit(1); } if (vhci_pkt.type != HCI_VENDOR_PKT) exit(1); int dev_id = vhci_pkt.vendor_pkt.id; pthread_t th; if (pthread_create(&th, NULL, event_thread, NULL)) exit(1); int ret = ioctl(hci_sock, HCIDEVUP, dev_id); if (ret) { if (errno == ERFKILL) { rfkill_unblock_all(); ret = ioctl(hci_sock, HCIDEVUP, dev_id); } if (ret && errno != EALREADY) exit(1); } struct hci_dev_req dr = {0}; dr.dev_id = dev_id; dr.dev_opt = SCAN_PAGE; if (ioctl(hci_sock, HCISETSCAN, &dr)) exit(1); struct hci_ev_conn_request request; memset(&request, 0, sizeof(request)); memset(&request.bdaddr, 0xaa, 6); *(uint8_t*)&request.bdaddr.b[5] = 0x10; request.link_type = ACL_LINK; hci_send_event_packet(vhci_fd, HCI_EV_CONN_REQUEST, &request, sizeof(request)); struct hci_ev_conn_complete complete; memset(&complete, 0, sizeof(complete)); complete.status = 0; complete.handle = HCI_HANDLE_1; memset(&complete.bdaddr, 0xaa, 6); *(uint8_t*)&complete.bdaddr.b[5] = 0x10; complete.link_type = ACL_LINK; complete.encr_mode = 0; hci_send_event_packet(vhci_fd, HCI_EV_CONN_COMPLETE, &complete, sizeof(complete)); struct hci_ev_remote_features features; memset(&features, 0, sizeof(features)); features.status = 0; features.handle = HCI_HANDLE_1; hci_send_event_packet(vhci_fd, HCI_EV_REMOTE_FEATURES, &features, sizeof(features)); struct { struct hci_ev_le_meta le_meta; struct hci_ev_le_conn_complete le_conn; } le_conn; memset(&le_conn, 0, sizeof(le_conn)); le_conn.le_meta.subevent = HCI_EV_LE_CONN_COMPLETE; memset(&le_conn.le_conn.bdaddr, 0xaa, 6); *(uint8_t*)&le_conn.le_conn.bdaddr.b[5] = 0x11; le_conn.le_conn.role = 1; le_conn.le_conn.handle = HCI_HANDLE_2; hci_send_event_packet(vhci_fd, HCI_EV_LE_META, &le_conn, sizeof(le_conn)); pthread_join(th, NULL); close(hci_sock); } static void setup_gadgetfs(); static void setup_binderfs(); static void setup_fusectl(); static void sandbox_common_mount_tmpfs(void) { write_file("/proc/sys/fs/mount-max", "100000"); if (mkdir("./syz-tmp", 0777)) exit(1); if (mount("", "./syz-tmp", "tmpfs", 0, NULL)) exit(1); if (mkdir("./syz-tmp/newroot", 0777)) exit(1); if (mkdir("./syz-tmp/newroot/dev", 0700)) exit(1); unsigned bind_mount_flags = MS_BIND | MS_REC | MS_PRIVATE; if (mount("/dev", "./syz-tmp/newroot/dev", NULL, bind_mount_flags, NULL)) exit(1); if (mkdir("./syz-tmp/newroot/proc", 0700)) exit(1); if (mount("syz-proc", "./syz-tmp/newroot/proc", "proc", 0, NULL)) exit(1); if (mkdir("./syz-tmp/newroot/selinux", 0700)) exit(1); const char* selinux_path = "./syz-tmp/newroot/selinux"; if (mount("/selinux", selinux_path, NULL, bind_mount_flags, NULL)) { if (errno != ENOENT) exit(1); if (mount("/sys/fs/selinux", selinux_path, NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); } if (mkdir("./syz-tmp/newroot/sys", 0700)) exit(1); if (mount("/sys", "./syz-tmp/newroot/sys", 0, bind_mount_flags, NULL)) exit(1); if (mount("/sys/kernel/debug", "./syz-tmp/newroot/sys/kernel/debug", NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); if (mount("/sys/fs/smackfs", "./syz-tmp/newroot/sys/fs/smackfs", NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); if (mount("/proc/sys/fs/binfmt_misc", "./syz-tmp/newroot/proc/sys/fs/binfmt_misc", NULL, bind_mount_flags, NULL) && errno != ENOENT) exit(1); if (mkdir("./syz-tmp/newroot/syz-inputs", 0700)) exit(1); if (mount("/syz-inputs", "./syz-tmp/newroot/syz-inputs", NULL, bind_mount_flags | MS_RDONLY, NULL) && errno != ENOENT) exit(1); if (mkdir("./syz-tmp/pivot", 0777)) exit(1); if (syscall(SYS_pivot_root, "./syz-tmp", "./syz-tmp/pivot")) { if (chdir("./syz-tmp")) exit(1); } else { if (chdir("/")) exit(1); if (umount2("./pivot", MNT_DETACH)) exit(1); } if (chroot("./newroot")) exit(1); if (chdir("/")) exit(1); setup_gadgetfs(); setup_binderfs(); setup_fusectl(); } static void setup_gadgetfs() { if (mkdir("/dev/gadgetfs", 0777)) { } if (mount("gadgetfs", "/dev/gadgetfs", "gadgetfs", 0, NULL)) { } } static void setup_fusectl() { if (mount(0, "/sys/fs/fuse/connections", "fusectl", 0, 0)) { } } static void setup_binderfs() { if (mkdir("/dev/binderfs", 0777)) { } if (mount("binder", "/dev/binderfs", "binder", 0, NULL)) { } if (symlink("/dev/binderfs", "./binderfs")) { } } static void loop(); static void sandbox_common() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); if (getppid() == 1) exit(1); struct rlimit rlim; rlim.rlim_cur = rlim.rlim_max = (200 << 20); setrlimit(RLIMIT_AS, &rlim); rlim.rlim_cur = rlim.rlim_max = 32 << 20; setrlimit(RLIMIT_MEMLOCK, &rlim); rlim.rlim_cur = rlim.rlim_max = 136 << 20; setrlimit(RLIMIT_FSIZE, &rlim); rlim.rlim_cur = rlim.rlim_max = 1 << 20; setrlimit(RLIMIT_STACK, &rlim); rlim.rlim_cur = rlim.rlim_max = 128 << 20; setrlimit(RLIMIT_CORE, &rlim); rlim.rlim_cur = rlim.rlim_max = 256; setrlimit(RLIMIT_NOFILE, &rlim); if (unshare(CLONE_NEWNS)) { } if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL)) { } if (unshare(CLONE_NEWIPC)) { } if (unshare(0x02000000)) { } if (unshare(CLONE_NEWUTS)) { } if (unshare(CLONE_SYSVSEM)) { } typedef struct { const char* name; const char* value; } sysctl_t; static const sysctl_t sysctls[] = { {"/proc/sys/kernel/shmmax", "16777216"}, {"/proc/sys/kernel/shmall", "536870912"}, {"/proc/sys/kernel/shmmni", "1024"}, {"/proc/sys/kernel/msgmax", "8192"}, {"/proc/sys/kernel/msgmni", "1024"}, {"/proc/sys/kernel/msgmnb", "1024"}, {"/proc/sys/kernel/sem", "1024 1048576 500 1024"}, }; unsigned i; for (i = 0; i < sizeof(sysctls) / sizeof(sysctls[0]); i++) write_file(sysctls[i].name, sysctls[i].value); } static int wait_for_loop(int pid) { if (pid < 0) exit(1); int status = 0; while (waitpid(-1, &status, __WALL) != pid) { } return WEXITSTATUS(status); } static void drop_caps(void) { struct __user_cap_header_struct cap_hdr = {}; struct __user_cap_data_struct cap_data[2] = {}; cap_hdr.version = _LINUX_CAPABILITY_VERSION_3; cap_hdr.pid = getpid(); if (syscall(SYS_capget, &cap_hdr, &cap_data)) exit(1); const int drop = (1 << CAP_SYS_PTRACE) | (1 << CAP_SYS_NICE); cap_data[0].effective &= ~drop; cap_data[0].permitted &= ~drop; cap_data[0].inheritable &= ~drop; if (syscall(SYS_capset, &cap_hdr, &cap_data)) exit(1); } static int do_sandbox_none(void) { if (unshare(CLONE_NEWPID)) { } int pid = fork(); if (pid != 0) return wait_for_loop(pid); initialize_vhci(); sandbox_common(); drop_caps(); if (unshare(CLONE_NEWNET)) { } write_file("/proc/sys/net/ipv4/ping_group_range", "0 65535"); initialize_tun(); sandbox_common_mount_tmpfs(); loop(); exit(1); } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); flush_tun(); } static void close_fds() { for (int fd = 3; fd < MAX_FDS; fd++) close(fd); } #define KMEMLEAK_FILE "/sys/kernel/debug/kmemleak" static const char* setup_leak() { if (!write_file(KMEMLEAK_FILE, "scan=off")) { if (errno == EBUSY) return "KMEMLEAK disabled: increase CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE" " or unset CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF"; return "failed to write(kmemleak, \"scan=off\")"; } if (!write_file(KMEMLEAK_FILE, "scan")) return "failed to write(kmemleak, \"scan\")"; sleep(5); if (!write_file(KMEMLEAK_FILE, "scan")) return "failed to write(kmemleak, \"scan\")"; if (!write_file(KMEMLEAK_FILE, "clear")) return "failed to write(kmemleak, \"clear\")"; return NULL; } static void check_leaks(void) { int fd = open(KMEMLEAK_FILE, O_RDWR); if (fd == -1) exit(1); uint64_t start = current_time_ms(); if (write(fd, "scan", 4) != 4) exit(1); sleep(1); while (current_time_ms() - start < 4 * 1000) sleep(1); if (write(fd, "scan", 4) != 4) exit(1); static char buf[128 << 10]; ssize_t n = read(fd, buf, sizeof(buf) - 1); if (n < 0) exit(1); int nleaks = 0; if (n != 0) { sleep(1); if (write(fd, "scan", 4) != 4) exit(1); if (lseek(fd, 0, SEEK_SET) < 0) exit(1); n = read(fd, buf, sizeof(buf) - 1); if (n < 0) exit(1); buf[n] = 0; char* pos = buf; char* end = buf + n; while (pos < end) { char* next = strstr(pos + 1, "unreferenced object"); if (!next) next = end; char prev = *next; *next = 0; fprintf(stderr, "BUG: memory leak\n%s\n", pos); *next = prev; pos = next; nleaks++; } } if (write(fd, "clear", 5) != 5) exit(1); close(fd); if (nleaks) exit(1); } static void setup_sysctl() { int cad_pid = fork(); if (cad_pid < 0) exit(1); if (cad_pid == 0) { for (;;) sleep(100); } char tmppid[32]; snprintf(tmppid, sizeof(tmppid), "%d", cad_pid); struct { const char* name; const char* data; } files[] = { {"/sys/kernel/debug/x86/nmi_longest_ns", "10000000000"}, {"/proc/sys/kernel/hung_task_check_interval_secs", "20"}, {"/proc/sys/net/core/bpf_jit_kallsyms", "1"}, {"/proc/sys/net/core/bpf_jit_harden", "0"}, {"/proc/sys/kernel/kptr_restrict", "0"}, {"/proc/sys/kernel/softlockup_all_cpu_backtrace", "1"}, {"/proc/sys/fs/mount-max", "100"}, {"/proc/sys/vm/oom_dump_tasks", "0"}, {"/proc/sys/debug/exception-trace", "0"}, {"/proc/sys/kernel/printk", "7 4 1 3"}, {"/proc/sys/kernel/keys/gc_delay", "1"}, {"/proc/sys/vm/oom_kill_allocating_task", "1"}, {"/proc/sys/kernel/ctrl-alt-del", "0"}, {"/proc/sys/kernel/cad_pid", tmppid}, }; for (size_t i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].name, files[i].data)) { } } kill(cad_pid, SIGKILL); while (waitpid(cad_pid, NULL, 0) != cad_pid) ; } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { if (write(1, "executing program\n", sizeof("executing program\n") - 1)) { } int i, call, thread; for (call = 0; call < 8; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 50); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); close_fds(); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter = 0; for (;; iter++) { int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { sleep_ms(10); if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; if (current_time_ms() - start < 5000) continue; kill_and_wait(pid, &status); break; } check_leaks(); } } uint64_t r[3] = {0xffffffffffffffff, 0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: // socket$inet_udp arguments: [ // domain: const = 0x2 (8 bytes) // type: const = 0x2 (8 bytes) // proto: const = 0x0 (4 bytes) // ] // returns sock_udp res = syscall(__NR_socket, /*domain=*/2ul, /*type=*/2ul, /*proto=*/0); if (res != -1) r[0] = res; break; case 1: // bind$inet arguments: [ // fd: sock_in (resource) // addr: ptr[in, sockaddr_in] { // sockaddr_in { // family: const = 0x2 (2 bytes) // port: int16be = 0x4e20 (2 bytes) // addr: union ipv4_addr { // empty: const = 0x0 (4 bytes) // } // pad = 0x0 (8 bytes) // } // } // addrlen: len = 0x10 (8 bytes) // ] *(uint16_t*)0x200000000040 = 2; *(uint16_t*)0x200000000042 = htobe16(0x4e20); *(uint32_t*)0x200000000044 = htobe32(0); syscall(__NR_bind, /*fd=*/r[0], /*addr=*/0x200000000040ul, /*addrlen=*/0x10ul); break; case 2: // syz_emit_ethernet arguments: [ // len: len = 0xbe (8 bytes) // packet: ptr[in, eth_packet] { // eth_packet { // dst_mac: union mac_addr { // dev: mac_addr_t[netdev_addr_id] { // a0: buffer: {aa aa aa aa aa} (length 0x5) // a1: int8 = 0x23 (1 bytes) // } // } // src_mac: union mac_addr { // link_local: mac_addr_link_local { // a0: const = 0x1 (1 bytes) // a1: const = 0x80 (1 bytes) // a2: const = 0xc2 (1 bytes) // a3: const = 0x0 (1 bytes) // a4: const = 0x0 (1 bytes) // a5: mac_addr_link_local_values = 0x0 (1 bytes) // } // } // vtag: union optional[vlan_tag] { // void: buffer: {} (length 0x0) // } // payload: eth_payload { // eth2: union eth2_packet { // ipv4: eth2_packet_t[ETH_P_IP, ipv4_packet] { // etype: const = 0x800 (2 bytes) // payload: union ipv4_packet { // udp: ipv4_packet_t[const[IPPROTO_UDP, int8], udp_packet] { // header: ipv4_header[const[IPPROTO_UDP, int8]] { // ihl: bytesize4 = 0x5 (0 bytes) // version: const = 0x4 (1 bytes) // ecn: int8 = 0x0 (0 bytes) // dscp: int8 = 0x0 (1 bytes) // total_len: len = 0xb0 (2 bytes) // id: int16be = 0x0 (2 bytes) // frag_off: int16be = 0x0 (2 bytes) // ttl: int8 = 0x0 (1 bytes) // protocol: const = 0x11 (1 bytes) // csum: csum = 0x0 (2 bytes) // src_ip: union ipv4_addr { // empty: const = 0x0 (4 bytes) // } // dst_ip: union ipv4_addr { // empty: const = 0x0 (4 bytes) // } // options: ipv4_options { // options: array[ipv4_option] { // } // } // } // payload: udp_packet { // src_port: int16be = 0x0 (2 bytes) // dst_port: int16be = 0x4e20 (2 bytes) // length: len = 0x9c (2 bytes) // csum: csum = 0x0 (2 bytes) // payload: union udp_payload { // wg: union wg_packet { // initiation: message_handshake_initiation { // type: const = 0x1 (4 bytes) // sender_index: int32 = 0x0 (4 bytes) // unencrypted_ephemeral: buffer: {7b 4b 14 3b 74 // 61 fd 77 7b 1c 01 2b d1 4e fb 9f 49 fc db 8f 08 // 0c 26 a0 48 83 ad 5c 8c 82 b8 af} (length 0x20) // encrypted_static: buffer: {58 4c bf 26 49 a5 0f // 2d bc 43 ef a8 69 8d 0a 88 1c 51 85 2e 44 51 b5 // 7d 03 7a d3 c0 45 94 28 24 25 1d 7d 17 b5 19 15 // 84 bc d4 fb e4 0a 23 42 4d} (length 0x30) // encrypted_timestamp: buffer: {bc fd 56 f1 37 54 // 61 ca aa 2f 19 93 5e 69 96 c7 09 6f fe eb 03 00 // 00 00 00 00 00 64} (length 0x1c) macs: // message_macs { // mac1: buffer: {9a 3b fb c1 f3 9c b3 07 b3 47 // 2e b9 cd b0 42 d2} (length 0x10) mac2: buffer: // {64 3f cb b2 c5 a5 7d f6 7d 54 4a f6 e8 da fe // 09} (length 0x10) // } // } // } // } // } // } // } // } // } // } // } // } // frags: nil // ] memset((void*)0x200000000000, 170, 5); *(uint8_t*)0x200000000005 = 0x23; *(uint8_t*)0x200000000006 = 1; *(uint8_t*)0x200000000007 = 0x80; *(uint8_t*)0x200000000008 = 0xc2; *(uint8_t*)0x200000000009 = 0; *(uint8_t*)0x20000000000a = 0; *(uint8_t*)0x20000000000b = 0; *(uint16_t*)0x20000000000c = htobe16(0x800); STORE_BY_BITMASK(uint8_t, , 0x20000000000e, 5, 0, 4); STORE_BY_BITMASK(uint8_t, , 0x20000000000e, 4, 4, 4); STORE_BY_BITMASK(uint8_t, , 0x20000000000f, 0, 0, 2); STORE_BY_BITMASK(uint8_t, , 0x20000000000f, 0, 2, 6); *(uint16_t*)0x200000000010 = htobe16(0xb0); *(uint16_t*)0x200000000012 = htobe16(0); *(uint16_t*)0x200000000014 = htobe16(0); *(uint8_t*)0x200000000016 = 0; *(uint8_t*)0x200000000017 = 0x11; *(uint16_t*)0x200000000018 = htobe16(0); *(uint32_t*)0x20000000001a = htobe32(0); *(uint32_t*)0x20000000001e = htobe32(0); *(uint16_t*)0x200000000022 = htobe16(0); *(uint16_t*)0x200000000024 = htobe16(0x4e20); *(uint16_t*)0x200000000026 = htobe16(0x9c); *(uint16_t*)0x200000000028 = htobe16(0); *(uint32_t*)0x20000000002a = 1; *(uint32_t*)0x20000000002e = 0; memcpy((void*)0x200000000032, "\x7b\x4b\x14\x3b\x74\x61\xfd\x77\x7b\x1c\x01\x2b\xd1\x4e\xfb\x9f" "\x49\xfc\xdb\x8f\x08\x0c\x26\xa0\x48\x83\xad\x5c\x8c\x82\xb8\xaf", 32); memcpy((void*)0x200000000052, "\x58\x4c\xbf\x26\x49\xa5\x0f\x2d\xbc\x43\xef\xa8\x69\x8d\x0a\x88" "\x1c\x51\x85\x2e\x44\x51\xb5\x7d\x03\x7a\xd3\xc0\x45\x94\x28\x24" "\x25\x1d\x7d\x17\xb5\x19\x15\x84\xbc\xd4\xfb\xe4\x0a\x23\x42\x4d", 48); memcpy((void*)0x200000000082, "\xbc\xfd\x56\xf1\x37\x54\x61\xca\xaa\x2f\x19\x93\x5e\x69\x96\xc7" "\x09\x6f\xfe\xeb\x03\x00\x00\x00\x00\x00\x00\x64", 28); memcpy((void*)0x20000000009e, "\x9a\x3b\xfb\xc1\xf3\x9c\xb3\x07\xb3\x47\x2e\xb9\xcd\xb0\x42\xd2", 16); memcpy((void*)0x2000000000ae, "\x64\x3f\xcb\xb2\xc5\xa5\x7d\xf6\x7d\x54\x4a\xf6\xe8\xda\xfe\x09", 16); struct csum_inet csum_1; csum_inet_init(&csum_1); csum_inet_update(&csum_1, (const uint8_t*)0x20000000001a, 4); csum_inet_update(&csum_1, (const uint8_t*)0x20000000001e, 4); uint16_t csum_1_chunk_2 = 0x1100; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_2, 2); uint16_t csum_1_chunk_3 = 0x9c00; csum_inet_update(&csum_1, (const uint8_t*)&csum_1_chunk_3, 2); csum_inet_update(&csum_1, (const uint8_t*)0x200000000022, 156); *(uint16_t*)0x200000000028 = csum_inet_digest(&csum_1); struct csum_inet csum_2; csum_inet_init(&csum_2); csum_inet_update(&csum_2, (const uint8_t*)0x20000000000e, 20); *(uint16_t*)0x200000000018 = csum_inet_digest(&csum_2); syz_emit_ethernet(/*len=*/0xbe, /*packet=*/0x200000000000, /*frags=*/0); break; case 3: // bpf$PROG_LOAD_XDP arguments: [ // cmd: const = 0x5 (8 bytes) // arg: ptr[in, bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], // const[BPF_XDP, int32], const[0, int32], const[0, int32]]] { // bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], const[BPF_XDP, int32], // const[0, int32], const[0, int32]] { // type: const = 0x6 (4 bytes) // ninsn: bytesize8 = 0x3 (4 bytes) // insns: ptr[inout, array[ANYUNION]] { // array[ANYUNION] { // union ANYUNION { // ANYBLOB: buffer: {18 00 00 00 02 00 00 00 00 00 00 00 00 00 // 00 00 95} (length 0x11) // } // } // } // license: nil // loglev: int32 = 0x3 (4 bytes) // logsize: len = 0x0 (4 bytes) // log: nil // kern_version: bpf_kern_version = 0x41000 (4 bytes) // flags: bpf_prog_load_flags = 0x0 (4 bytes) // prog_name: buffer: {00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00} (length 0x10) prog_ifindex: ifindex (resource) // expected_attach_type: const = 0x25 (4 bytes) // btf_fd: fd_btf (resource) // func_info_rec_size: const = 0x8 (4 bytes) // func_info: nil // func_info_cnt: len = 0x0 (4 bytes) // line_info_rec_size: const = 0x10 (4 bytes) // line_info: nil // line_info_cnt: len = 0x0 (4 bytes) // attach_btf_id: const = 0x0 (4 bytes) // attach_prog_fd: const = 0x0 (4 bytes) // core_relo_cnt: len = 0x0 (4 bytes) // fd_array: nil // core_relos: nil // core_relo_rec_size: const = 0x10 (4 bytes) // log_true_size: int32 = 0x0 (4 bytes) // prog_token_fd: union _bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], // const[BPF_XDP, int32], const[0, int32], const[0, // int32]]_prog_token_fd_wrapper { // void: buffer: {} (length 0x0) // } // pad: union _bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], // const[BPF_XDP, int32], const[0, int32], const[0, // int32]]_pad_wrapper { // value: const = 0x0 (4 bytes) // } // } // } // size: len = 0x94 (8 bytes) // ] // returns fd_bpf_prog_xdp *(uint32_t*)0x200000000140 = 6; *(uint32_t*)0x200000000144 = 3; *(uint64_t*)0x200000000148 = 0x200000000680; memcpy( (void*)0x200000000680, "\x18\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x95", 17); *(uint64_t*)0x200000000150 = 0; *(uint32_t*)0x200000000158 = 3; *(uint32_t*)0x20000000015c = 0; *(uint64_t*)0x200000000160 = 0; *(uint32_t*)0x200000000168 = 0x41000; *(uint32_t*)0x20000000016c = 0; memset((void*)0x200000000170, 0, 16); *(uint32_t*)0x200000000180 = 0; *(uint32_t*)0x200000000184 = 0x25; *(uint32_t*)0x200000000188 = -1; *(uint32_t*)0x20000000018c = 8; *(uint64_t*)0x200000000190 = 0; *(uint32_t*)0x200000000198 = 0; *(uint32_t*)0x20000000019c = 0x10; *(uint64_t*)0x2000000001a0 = 0; *(uint32_t*)0x2000000001a8 = 0; *(uint32_t*)0x2000000001ac = 0; *(uint32_t*)0x2000000001b0 = 0; *(uint32_t*)0x2000000001b4 = 0; *(uint64_t*)0x2000000001b8 = 0; *(uint64_t*)0x2000000001c0 = 0; *(uint32_t*)0x2000000001c8 = 0x10; *(uint32_t*)0x2000000001cc = 0; *(uint32_t*)0x2000000001d0 = 0; syscall(__NR_bpf, /*cmd=*/5ul, /*arg=*/0x200000000140ul, /*size=*/0x94ul); break; case 4: // bpf$PROG_LOAD_XDP arguments: [ // cmd: const = 0x5 (8 bytes) // arg: ptr[in, bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], // const[BPF_XDP, int32], const[0, int32], const[0, int32]]] { // bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], const[BPF_XDP, int32], // const[0, int32], const[0, int32]] { // type: const = 0x6 (4 bytes) // ninsn: bytesize8 = 0x3 (4 bytes) // insns: ptr[inout, array[ANYUNION]] { // array[ANYUNION] { // } // } // license: ptr[in, buffer] { // buffer: {73 79 7a 6b 61 6c 6c 65 72 00} (length 0xa) // } // loglev: int32 = 0x7 (4 bytes) // logsize: len = 0x0 (4 bytes) // log: nil // kern_version: bpf_kern_version = 0x0 (4 bytes) // flags: bpf_prog_load_flags = 0x0 (4 bytes) // prog_name: buffer: {00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 // 00} (length 0x10) prog_ifindex: ifindex (resource) // expected_attach_type: const = 0x25 (4 bytes) // btf_fd: fd_btf (resource) // func_info_rec_size: const = 0x8 (4 bytes) // func_info: nil // func_info_cnt: len = 0x0 (4 bytes) // line_info_rec_size: const = 0x10 (4 bytes) // line_info: nil // line_info_cnt: len = 0x0 (4 bytes) // attach_btf_id: const = 0x0 (4 bytes) // attach_prog_fd: const = 0x0 (4 bytes) // core_relo_cnt: len = 0x0 (4 bytes) // fd_array: nil // core_relos: nil // core_relo_rec_size: const = 0x10 (4 bytes) // log_true_size: int32 = 0x0 (4 bytes) // prog_token_fd: union _bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], // const[BPF_XDP, int32], const[0, int32], const[0, // int32]]_prog_token_fd_wrapper { // void: buffer: {} (length 0x0) // } // pad: union _bpf_prog_t[const[BPF_PROG_TYPE_XDP, int32], // const[BPF_XDP, int32], const[0, int32], const[0, // int32]]_pad_wrapper { // value: const = 0x0 (4 bytes) // } // } // } // size: len = 0x94 (8 bytes) // ] // returns fd_bpf_prog_xdp *(uint32_t*)0x200000000480 = 6; *(uint32_t*)0x200000000484 = 3; *(uint64_t*)0x200000000488 = 0x200000000680; *(uint64_t*)0x200000000490 = 0x2000000002c0; memcpy((void*)0x2000000002c0, "syzkaller\000", 10); *(uint32_t*)0x200000000498 = 7; *(uint32_t*)0x20000000049c = 0; *(uint64_t*)0x2000000004a0 = 0; *(uint32_t*)0x2000000004a8 = 0; *(uint32_t*)0x2000000004ac = 0; memset((void*)0x2000000004b0, 0, 16); *(uint32_t*)0x2000000004c0 = 0; *(uint32_t*)0x2000000004c4 = 0x25; *(uint32_t*)0x2000000004c8 = -1; *(uint32_t*)0x2000000004cc = 8; *(uint64_t*)0x2000000004d0 = 0; *(uint32_t*)0x2000000004d8 = 0; *(uint32_t*)0x2000000004dc = 0x10; *(uint64_t*)0x2000000004e0 = 0; *(uint32_t*)0x2000000004e8 = 0; *(uint32_t*)0x2000000004ec = 0; *(uint32_t*)0x2000000004f0 = 0; *(uint32_t*)0x2000000004f4 = 0; *(uint64_t*)0x2000000004f8 = 0; *(uint64_t*)0x200000000500 = 0; *(uint32_t*)0x200000000508 = 0x10; *(uint32_t*)0x20000000050c = 0; *(uint32_t*)0x200000000510 = 0; res = syscall(__NR_bpf, /*cmd=*/5ul, /*arg=*/0x200000000480ul, /*size=*/0x94ul); if (res != -1) r[1] = res; break; case 5: // bpf$BPF_PROG_TEST_RUN arguments: [ // cmd: const = 0xa (8 bytes) // arg: ptr[in, bpf_test_prog_arg] { // bpf_test_prog_arg { // prog: fd_bpf_prog (resource) // retval: const = 0x5 (4 bytes) // insizedata: len = 0xb68 (4 bytes) // outsizedata: len = 0x0 (4 bytes) // indata: ptr[in, buffer] { // buffer: {25} (length 0x1) // } // outdata: nil // repeat: int32 = 0xd01 (4 bytes) // dur: const = 0x0 (4 bytes) // insizectx: len = 0x0 (4 bytes) // outsizectx: len = 0x0 (4 bytes) // inctx: nil // outctx: nil // flags: bpf_prog_test_run_flags = 0x2 (4 bytes) // cpu: const = 0x0 (4 bytes) // batch_size: int32 = 0x0 (4 bytes) // pad = 0x0 (4 bytes) // } // } // size: len = 0x48 (8 bytes) // ] *(uint32_t*)0x200000000600 = r[1]; *(uint32_t*)0x200000000604 = 5; *(uint32_t*)0x200000000608 = 0xb68; *(uint32_t*)0x20000000060c = 0; *(uint64_t*)0x200000000610 = 0x200000000000; memset((void*)0x200000000000, 37, 1); *(uint64_t*)0x200000000618 = 0; *(uint32_t*)0x200000000620 = 0xd01; *(uint32_t*)0x200000000624 = 0; *(uint32_t*)0x200000000628 = 0; *(uint32_t*)0x20000000062c = 0; *(uint64_t*)0x200000000630 = 0; *(uint64_t*)0x200000000638 = 0; *(uint32_t*)0x200000000640 = 2; *(uint32_t*)0x200000000644 = 0; *(uint32_t*)0x200000000648 = 0; syscall(__NR_bpf, /*cmd=*/0xaul, /*arg=*/0x200000000600ul, /*size=*/0x48ul); break; case 6: // socket$pppl2tp arguments: [ // domain: const = 0x18 (8 bytes) // type: const = 0x1 (8 bytes) // proto: const = 0x1 (4 bytes) // ] // returns sock_pppl2tp res = syscall(__NR_socket, /*domain=*/0x18ul, /*type=*/1ul, /*proto=*/1); if (res != -1) r[2] = res; break; case 7: // connect$pppl2tp arguments: [ // fd: sock_pppl2tp (resource) // addr: ptr[in, sockaddr_pppl2tp] { // union sockaddr_pppl2tp { // pppol2tpv3: sockaddr_pppl2tp_t[pppol2tpv3_addr] { // sa_family: const = 0x18 (2 bytes) // sa_protocol: const = 0x1 (4 bytes) // addr: pppol2tp_addr_t[int32] { // pid: const = 0x3 (4 bytes) // fd: sock (resource) // addr: sockaddr_in { // family: const = 0x2 (2 bytes) // port: int16be = 0x0 (2 bytes) // addr: union ipv4_addr { // dev: ipv4_addr_t[netdev_addr_id] { // a0: const = 0xac (1 bytes) // a1: const = 0x14 (1 bytes) // a2: const = 0x14 (1 bytes) // a3: int8 = 0x2e (1 bytes) // } // } // pad = 0x0 (8 bytes) // } // s_tunnel: int32 = 0x2 (4 bytes) // s_session: int32 = 0x0 (4 bytes) // d_tunnel: int32 = 0x0 (4 bytes) // d_session: int32 = 0x0 (4 bytes) // } // } // } // } // addrlen: len = 0x2e (8 bytes) // ] *(uint16_t*)0x200000000000 = 0x18; *(uint32_t*)0x200000000002 = 1; *(uint32_t*)0x200000000006 = 3; *(uint32_t*)0x20000000000a = r[0]; *(uint16_t*)0x20000000000e = 2; *(uint16_t*)0x200000000010 = htobe16(0); *(uint8_t*)0x200000000012 = 0xac; *(uint8_t*)0x200000000013 = 0x14; *(uint8_t*)0x200000000014 = 0x14; *(uint8_t*)0x200000000015 = 0x2e; *(uint32_t*)0x20000000001e = 2; *(uint32_t*)0x200000000022 = 0; *(uint32_t*)0x200000000026 = 0; *(uint32_t*)0x20000000002a = 0; syscall(__NR_connect, /*fd=*/r[2], /*addr=*/0x200000000000ul, /*addrlen=*/0x2eul); break; } } int main(void) { syscall(__NR_mmap, /*addr=*/0x1ffffffff000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x200000000000ul, /*len=*/0x1000000ul, /*prot=PROT_WRITE|PROT_READ|PROT_EXEC*/ 7ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x200001000000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); setup_sysctl(); const char* reason; (void)reason; if ((reason = setup_leak())) printf("the reproducer may not work as expected: leak checking setup " "failed: %s\n", reason); do_sandbox_none(); return 0; }