// https://syzkaller.appspot.com/bug?id=df98d94c06e6a69c54cd75b104c550731d49d713 // autogenerated by syzkaller (https://github.com/google/syzkaller) #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static unsigned long long procid; static __thread int clone_ongoing; static __thread int skip_segv; static __thread jmp_buf segv_env; static void segv_handler(int sig, siginfo_t* info, void* ctx) { if (__atomic_load_n(&clone_ongoing, __ATOMIC_RELAXED) != 0) { exit(sig); } uintptr_t addr = (uintptr_t)info->si_addr; const uintptr_t prog_start = 1 << 20; const uintptr_t prog_end = 100 << 20; int skip = __atomic_load_n(&skip_segv, __ATOMIC_RELAXED) != 0; int valid = addr < prog_start || addr > prog_end; if (skip && valid) { _longjmp(segv_env, 1); } exit(sig); } static void install_segv_handler(void) { struct sigaction sa; memset(&sa, 0, sizeof(sa)); sa.sa_handler = SIG_IGN; syscall(SYS_rt_sigaction, 0x20, &sa, NULL, 8); syscall(SYS_rt_sigaction, 0x21, &sa, NULL, 8); memset(&sa, 0, sizeof(sa)); sa.sa_sigaction = segv_handler; sa.sa_flags = SA_NODEFER | SA_SIGINFO; sigaction(SIGSEGV, &sa, NULL); sigaction(SIGBUS, &sa, NULL); } #define NONFAILING(...) \ ({ \ int ok = 1; \ __atomic_fetch_add(&skip_segv, 1, __ATOMIC_SEQ_CST); \ if (_setjmp(segv_env) == 0) { \ __VA_ARGS__; \ } else \ ok = 0; \ __atomic_fetch_sub(&skip_segv, 1, __ATOMIC_SEQ_CST); \ ok; \ }) static void sleep_ms(uint64_t ms) { usleep(ms * 1000); } static uint64_t current_time_ms(void) { struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC, &ts)) exit(1); return (uint64_t)ts.tv_sec * 1000 + (uint64_t)ts.tv_nsec / 1000000; } static void use_temporary_dir(void) { char tmpdir_template[] = "./syzkaller.XXXXXX"; char* tmpdir = mkdtemp(tmpdir_template); if (!tmpdir) exit(1); if (chmod(tmpdir, 0777)) exit(1); if (chdir(tmpdir)) exit(1); } static void thread_start(void* (*fn)(void*), void* arg) { pthread_t th; pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 128 << 10); int i = 0; for (; i < 100; i++) { if (pthread_create(&th, &attr, fn, arg) == 0) { pthread_attr_destroy(&attr); return; } if (errno == EAGAIN) { usleep(50); continue; } break; } exit(1); } typedef struct { int state; } event_t; static void event_init(event_t* ev) { ev->state = 0; } static void event_reset(event_t* ev) { ev->state = 0; } static void event_set(event_t* ev) { if (ev->state) exit(1); __atomic_store_n(&ev->state, 1, __ATOMIC_RELEASE); syscall(SYS_futex, &ev->state, FUTEX_WAKE | FUTEX_PRIVATE_FLAG, 1000000); } static void event_wait(event_t* ev) { while (!__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, 0); } static int event_isset(event_t* ev) { return __atomic_load_n(&ev->state, __ATOMIC_ACQUIRE); } static int event_timedwait(event_t* ev, uint64_t timeout) { uint64_t start = current_time_ms(); uint64_t now = start; for (;;) { uint64_t remain = timeout - (now - start); struct timespec ts; ts.tv_sec = remain / 1000; ts.tv_nsec = (remain % 1000) * 1000 * 1000; syscall(SYS_futex, &ev->state, FUTEX_WAIT | FUTEX_PRIVATE_FLAG, 0, &ts); if (__atomic_load_n(&ev->state, __ATOMIC_ACQUIRE)) return 1; now = current_time_ms(); if (now - start > timeout) return 0; } } static bool write_file(const char* file, const char* what, ...) { char buf[1024]; va_list args; va_start(args, what); vsnprintf(buf, sizeof(buf), what, args); va_end(args); buf[sizeof(buf) - 1] = 0; int len = strlen(buf); int fd = open(file, O_WRONLY | O_CLOEXEC); if (fd == -1) return false; if (write(fd, buf, len) != len) { int err = errno; close(fd); errno = err; return false; } close(fd); return true; } struct nlmsg { char* pos; int nesting; struct nlattr* nested[8]; char buf[4096]; }; static void netlink_init(struct nlmsg* nlmsg, int typ, int flags, const void* data, int size) { memset(nlmsg, 0, sizeof(*nlmsg)); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_type = typ; hdr->nlmsg_flags = NLM_F_REQUEST | NLM_F_ACK | flags; memcpy(hdr + 1, data, size); nlmsg->pos = (char*)(hdr + 1) + NLMSG_ALIGN(size); } static void netlink_attr(struct nlmsg* nlmsg, int typ, const void* data, int size) { struct nlattr* attr = (struct nlattr*)nlmsg->pos; attr->nla_len = sizeof(*attr) + size; attr->nla_type = typ; if (size > 0) memcpy(attr + 1, data, size); nlmsg->pos += NLMSG_ALIGN(attr->nla_len); } static int netlink_send_ext(struct nlmsg* nlmsg, int sock, uint16_t reply_type, int* reply_len, bool dofail) { if (nlmsg->pos > nlmsg->buf + sizeof(nlmsg->buf) || nlmsg->nesting) exit(1); struct nlmsghdr* hdr = (struct nlmsghdr*)nlmsg->buf; hdr->nlmsg_len = nlmsg->pos - nlmsg->buf; struct sockaddr_nl addr; memset(&addr, 0, sizeof(addr)); addr.nl_family = AF_NETLINK; ssize_t n = sendto(sock, nlmsg->buf, hdr->nlmsg_len, 0, (struct sockaddr*)&addr, sizeof(addr)); if (n != (ssize_t)hdr->nlmsg_len) { if (dofail) exit(1); return -1; } n = recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); if (reply_len) *reply_len = 0; if (n < 0) { if (dofail) exit(1); return -1; } if (n < (ssize_t)sizeof(struct nlmsghdr)) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type == NLMSG_DONE) return 0; if (reply_len && hdr->nlmsg_type == reply_type) { *reply_len = n; return 0; } if (n < (ssize_t)(sizeof(struct nlmsghdr) + sizeof(struct nlmsgerr))) { errno = EINVAL; if (dofail) exit(1); return -1; } if (hdr->nlmsg_type != NLMSG_ERROR) { errno = EINVAL; if (dofail) exit(1); return -1; } errno = -((struct nlmsgerr*)(hdr + 1))->error; return -errno; } static int netlink_query_family_id(struct nlmsg* nlmsg, int sock, const char* family_name, bool dofail) { struct genlmsghdr genlhdr; memset(&genlhdr, 0, sizeof(genlhdr)); genlhdr.cmd = CTRL_CMD_GETFAMILY; netlink_init(nlmsg, GENL_ID_CTRL, 0, &genlhdr, sizeof(genlhdr)); netlink_attr(nlmsg, CTRL_ATTR_FAMILY_NAME, family_name, strnlen(family_name, GENL_NAMSIZ - 1) + 1); int n = 0; int err = netlink_send_ext(nlmsg, sock, GENL_ID_CTRL, &n, dofail); if (err < 0) { return -1; } uint16_t id = 0; struct nlattr* attr = (struct nlattr*)(nlmsg->buf + NLMSG_HDRLEN + NLMSG_ALIGN(sizeof(genlhdr))); for (; (char*)attr < nlmsg->buf + n; attr = (struct nlattr*)((char*)attr + NLMSG_ALIGN(attr->nla_len))) { if (attr->nla_type == CTRL_ATTR_FAMILY_ID) { id = *(uint16_t*)(attr + 1); break; } } if (!id) { errno = EINVAL; return -1; } recv(sock, nlmsg->buf, sizeof(nlmsg->buf), 0); return id; } #define MAX_FDS 30 #define USB_MAX_IFACE_NUM 4 #define USB_MAX_EP_NUM 32 #define USB_MAX_FDS 6 struct usb_endpoint_index { struct usb_endpoint_descriptor desc; int handle; }; struct usb_iface_index { struct usb_interface_descriptor* iface; uint8_t bInterfaceNumber; uint8_t bAlternateSetting; uint8_t bInterfaceClass; struct usb_endpoint_index eps[USB_MAX_EP_NUM]; int eps_num; }; struct usb_device_index { struct usb_device_descriptor* dev; struct usb_config_descriptor* config; uint8_t bDeviceClass; uint8_t bMaxPower; int config_length; struct usb_iface_index ifaces[USB_MAX_IFACE_NUM]; int ifaces_num; int iface_cur; }; struct usb_info { int fd; struct usb_device_index index; }; static struct usb_info usb_devices[USB_MAX_FDS]; static struct usb_device_index* lookup_usb_index(int fd) { for (int i = 0; i < USB_MAX_FDS; i++) { if (__atomic_load_n(&usb_devices[i].fd, __ATOMIC_ACQUIRE) == fd) return &usb_devices[i].index; } return NULL; } static int usb_devices_num; static bool parse_usb_descriptor(const char* buffer, size_t length, struct usb_device_index* index) { if (length < sizeof(*index->dev) + sizeof(*index->config)) return false; memset(index, 0, sizeof(*index)); index->dev = (struct usb_device_descriptor*)buffer; index->config = (struct usb_config_descriptor*)(buffer + sizeof(*index->dev)); index->bDeviceClass = index->dev->bDeviceClass; index->bMaxPower = index->config->bMaxPower; index->config_length = length - sizeof(*index->dev); index->iface_cur = -1; size_t offset = 0; while (true) { if (offset + 1 >= length) break; uint8_t desc_length = buffer[offset]; uint8_t desc_type = buffer[offset + 1]; if (desc_length <= 2) break; if (offset + desc_length > length) break; if (desc_type == USB_DT_INTERFACE && index->ifaces_num < USB_MAX_IFACE_NUM) { struct usb_interface_descriptor* iface = (struct usb_interface_descriptor*)(buffer + offset); index->ifaces[index->ifaces_num].iface = iface; index->ifaces[index->ifaces_num].bInterfaceNumber = iface->bInterfaceNumber; index->ifaces[index->ifaces_num].bAlternateSetting = iface->bAlternateSetting; index->ifaces[index->ifaces_num].bInterfaceClass = iface->bInterfaceClass; index->ifaces_num++; } if (desc_type == USB_DT_ENDPOINT && index->ifaces_num > 0) { struct usb_iface_index* iface = &index->ifaces[index->ifaces_num - 1]; if (iface->eps_num < USB_MAX_EP_NUM) { memcpy(&iface->eps[iface->eps_num].desc, buffer + offset, sizeof(iface->eps[iface->eps_num].desc)); iface->eps_num++; } } offset += desc_length; } return true; } static struct usb_device_index* add_usb_index(int fd, const char* dev, size_t dev_len) { int i = __atomic_fetch_add(&usb_devices_num, 1, __ATOMIC_RELAXED); if (i >= USB_MAX_FDS) return NULL; if (!parse_usb_descriptor(dev, dev_len, &usb_devices[i].index)) return NULL; __atomic_store_n(&usb_devices[i].fd, fd, __ATOMIC_RELEASE); return &usb_devices[i].index; } struct vusb_connect_string_descriptor { uint32_t len; char* str; } __attribute__((packed)); struct vusb_connect_descriptors { uint32_t qual_len; char* qual; uint32_t bos_len; char* bos; uint32_t strs_len; struct vusb_connect_string_descriptor strs[0]; } __attribute__((packed)); static const char default_string[] = {8, USB_DT_STRING, 's', 0, 'y', 0, 'z', 0}; static const char default_lang_id[] = {4, USB_DT_STRING, 0x09, 0x04}; static bool lookup_connect_response_in(int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, struct usb_qualifier_descriptor* qual, char** response_data, uint32_t* response_length) { struct usb_device_index* index = lookup_usb_index(fd); uint8_t str_idx; if (!index) return false; switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_GET_DESCRIPTOR: switch (ctrl->wValue >> 8) { case USB_DT_DEVICE: *response_data = (char*)index->dev; *response_length = sizeof(*index->dev); return true; case USB_DT_CONFIG: *response_data = (char*)index->config; *response_length = index->config_length; return true; case USB_DT_STRING: str_idx = (uint8_t)ctrl->wValue; if (descs && str_idx < descs->strs_len) { *response_data = descs->strs[str_idx].str; *response_length = descs->strs[str_idx].len; return true; } if (str_idx == 0) { *response_data = (char*)&default_lang_id[0]; *response_length = default_lang_id[0]; return true; } *response_data = (char*)&default_string[0]; *response_length = default_string[0]; return true; case USB_DT_BOS: *response_data = descs->bos; *response_length = descs->bos_len; return true; case USB_DT_DEVICE_QUALIFIER: if (!descs->qual) { qual->bLength = sizeof(*qual); qual->bDescriptorType = USB_DT_DEVICE_QUALIFIER; qual->bcdUSB = index->dev->bcdUSB; qual->bDeviceClass = index->dev->bDeviceClass; qual->bDeviceSubClass = index->dev->bDeviceSubClass; qual->bDeviceProtocol = index->dev->bDeviceProtocol; qual->bMaxPacketSize0 = index->dev->bMaxPacketSize0; qual->bNumConfigurations = index->dev->bNumConfigurations; qual->bRESERVED = 0; *response_data = (char*)qual; *response_length = sizeof(*qual); return true; } *response_data = descs->qual; *response_length = descs->qual_len; return true; default: break; } break; default: break; } break; default: break; } return false; } typedef bool (*lookup_connect_out_response_t)( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done); static bool lookup_connect_response_out_generic( int fd, const struct vusb_connect_descriptors* descs, const struct usb_ctrlrequest* ctrl, bool* done) { switch (ctrl->bRequestType & USB_TYPE_MASK) { case USB_TYPE_STANDARD: switch (ctrl->bRequest) { case USB_REQ_SET_CONFIGURATION: *done = true; return true; default: break; } break; } return false; } struct vusb_descriptor { uint8_t req_type; uint8_t desc_type; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_descriptors { uint32_t len; struct vusb_descriptor* generic; struct vusb_descriptor* descs[0]; } __attribute__((packed)); struct vusb_response { uint8_t type; uint8_t req; uint32_t len; char data[0]; } __attribute__((packed)); struct vusb_responses { uint32_t len; struct vusb_response* generic; struct vusb_response* resps[0]; } __attribute__((packed)); static bool lookup_control_response(const struct vusb_descriptors* descs, const struct vusb_responses* resps, struct usb_ctrlrequest* ctrl, char** response_data, uint32_t* response_length) { int descs_num = 0; int resps_num = 0; if (descs) descs_num = (descs->len - offsetof(struct vusb_descriptors, descs)) / sizeof(descs->descs[0]); if (resps) resps_num = (resps->len - offsetof(struct vusb_responses, resps)) / sizeof(resps->resps[0]); uint8_t req = ctrl->bRequest; uint8_t req_type = ctrl->bRequestType & USB_TYPE_MASK; uint8_t desc_type = ctrl->wValue >> 8; if (req == USB_REQ_GET_DESCRIPTOR) { int i; for (i = 0; i < descs_num; i++) { struct vusb_descriptor* desc = descs->descs[i]; if (!desc) continue; if (desc->req_type == req_type && desc->desc_type == desc_type) { *response_length = desc->len; if (*response_length != 0) *response_data = &desc->data[0]; else *response_data = NULL; return true; } } if (descs && descs->generic) { *response_data = &descs->generic->data[0]; *response_length = descs->generic->len; return true; } } else { int i; for (i = 0; i < resps_num; i++) { struct vusb_response* resp = resps->resps[i]; if (!resp) continue; if (resp->type == req_type && resp->req == req) { *response_length = resp->len; if (*response_length != 0) *response_data = &resp->data[0]; else *response_data = NULL; return true; } } if (resps && resps->generic) { *response_data = &resps->generic->data[0]; *response_length = resps->generic->len; return true; } } return false; } #define UDC_NAME_LENGTH_MAX 128 struct usb_raw_init { __u8 driver_name[UDC_NAME_LENGTH_MAX]; __u8 device_name[UDC_NAME_LENGTH_MAX]; __u8 speed; }; enum usb_raw_event_type { USB_RAW_EVENT_INVALID = 0, USB_RAW_EVENT_CONNECT = 1, USB_RAW_EVENT_CONTROL = 2, }; struct usb_raw_event { __u32 type; __u32 length; __u8 data[0]; }; struct usb_raw_ep_io { __u16 ep; __u16 flags; __u32 length; __u8 data[0]; }; #define USB_RAW_EPS_NUM_MAX 30 #define USB_RAW_EP_NAME_MAX 16 #define USB_RAW_EP_ADDR_ANY 0xff struct usb_raw_ep_caps { __u32 type_control : 1; __u32 type_iso : 1; __u32 type_bulk : 1; __u32 type_int : 1; __u32 dir_in : 1; __u32 dir_out : 1; }; struct usb_raw_ep_limits { __u16 maxpacket_limit; __u16 max_streams; __u32 reserved; }; struct usb_raw_ep_info { __u8 name[USB_RAW_EP_NAME_MAX]; __u32 addr; struct usb_raw_ep_caps caps; struct usb_raw_ep_limits limits; }; struct usb_raw_eps_info { struct usb_raw_ep_info eps[USB_RAW_EPS_NUM_MAX]; }; #define USB_RAW_IOCTL_INIT _IOW('U', 0, struct usb_raw_init) #define USB_RAW_IOCTL_RUN _IO('U', 1) #define USB_RAW_IOCTL_EVENT_FETCH _IOR('U', 2, struct usb_raw_event) #define USB_RAW_IOCTL_EP0_WRITE _IOW('U', 3, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP0_READ _IOWR('U', 4, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_ENABLE _IOW('U', 5, struct usb_endpoint_descriptor) #define USB_RAW_IOCTL_EP_DISABLE _IOW('U', 6, __u32) #define USB_RAW_IOCTL_EP_WRITE _IOW('U', 7, struct usb_raw_ep_io) #define USB_RAW_IOCTL_EP_READ _IOWR('U', 8, struct usb_raw_ep_io) #define USB_RAW_IOCTL_CONFIGURE _IO('U', 9) #define USB_RAW_IOCTL_VBUS_DRAW _IOW('U', 10, __u32) #define USB_RAW_IOCTL_EPS_INFO _IOR('U', 11, struct usb_raw_eps_info) #define USB_RAW_IOCTL_EP0_STALL _IO('U', 12) #define USB_RAW_IOCTL_EP_SET_HALT _IOW('U', 13, __u32) #define USB_RAW_IOCTL_EP_CLEAR_HALT _IOW('U', 14, __u32) #define USB_RAW_IOCTL_EP_SET_WEDGE _IOW('U', 15, __u32) static int usb_raw_open() { return open("/dev/raw-gadget", O_RDWR); } static int usb_raw_init(int fd, uint32_t speed, const char* driver, const char* device) { struct usb_raw_init arg; strncpy((char*)&arg.driver_name[0], driver, sizeof(arg.driver_name)); strncpy((char*)&arg.device_name[0], device, sizeof(arg.device_name)); arg.speed = speed; return ioctl(fd, USB_RAW_IOCTL_INIT, &arg); } static int usb_raw_run(int fd) { return ioctl(fd, USB_RAW_IOCTL_RUN, 0); } static int usb_raw_configure(int fd) { return ioctl(fd, USB_RAW_IOCTL_CONFIGURE, 0); } static int usb_raw_vbus_draw(int fd, uint32_t power) { return ioctl(fd, USB_RAW_IOCTL_VBUS_DRAW, power); } static int usb_raw_ep0_write(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_WRITE, io); } static int usb_raw_ep0_read(int fd, struct usb_raw_ep_io* io) { return ioctl(fd, USB_RAW_IOCTL_EP0_READ, io); } static int usb_raw_event_fetch(int fd, struct usb_raw_event* event) { return ioctl(fd, USB_RAW_IOCTL_EVENT_FETCH, event); } static int usb_raw_ep_enable(int fd, struct usb_endpoint_descriptor* desc) { return ioctl(fd, USB_RAW_IOCTL_EP_ENABLE, desc); } static int usb_raw_ep_disable(int fd, int ep) { return ioctl(fd, USB_RAW_IOCTL_EP_DISABLE, ep); } static int usb_raw_ep0_stall(int fd) { return ioctl(fd, USB_RAW_IOCTL_EP0_STALL, 0); } static int lookup_interface(int fd, uint8_t bInterfaceNumber, uint8_t bAlternateSetting) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; for (int i = 0; i < index->ifaces_num; i++) { if (index->ifaces[i].bInterfaceNumber == bInterfaceNumber && index->ifaces[i].bAlternateSetting == bAlternateSetting) return i; } return -1; } #define USB_MAX_PACKET_SIZE 4096 struct usb_raw_control_event { struct usb_raw_event inner; struct usb_ctrlrequest ctrl; char data[USB_MAX_PACKET_SIZE]; }; struct usb_raw_ep_io_data { struct usb_raw_ep_io inner; char data[USB_MAX_PACKET_SIZE]; }; static void set_interface(int fd, int n) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return; if (index->iface_cur >= 0 && index->iface_cur < index->ifaces_num) { for (int ep = 0; ep < index->ifaces[index->iface_cur].eps_num; ep++) { int rv = usb_raw_ep_disable( fd, index->ifaces[index->iface_cur].eps[ep].handle); if (rv < 0) { } else { } } } if (n >= 0 && n < index->ifaces_num) { for (int ep = 0; ep < index->ifaces[n].eps_num; ep++) { int rv = usb_raw_ep_enable(fd, &index->ifaces[n].eps[ep].desc); if (rv < 0) { } else { index->ifaces[n].eps[ep].handle = rv; } } index->iface_cur = n; } } static int configure_device(int fd) { struct usb_device_index* index = lookup_usb_index(fd); if (!index) return -1; int rv = usb_raw_vbus_draw(fd, index->bMaxPower); if (rv < 0) { return rv; } rv = usb_raw_configure(fd); if (rv < 0) { return rv; } set_interface(fd, 0); return 0; } static volatile long syz_usb_connect_impl(uint64_t speed, uint64_t dev_len, const char* dev, const struct vusb_connect_descriptors* descs, lookup_connect_out_response_t lookup_connect_response_out) { if (!dev) { return -1; } int fd = usb_raw_open(); if (fd < 0) { return fd; } if (fd >= MAX_FDS) { close(fd); return -1; } struct usb_device_index* index = add_usb_index(fd, dev, dev_len); if (!index) { return -1; } char device[32]; sprintf(&device[0], "dummy_udc.%llu", procid); int rv = usb_raw_init(fd, speed, "dummy_udc", &device[0]); if (rv < 0) { return rv; } rv = usb_raw_run(fd); if (rv < 0) { return rv; } bool done = false; while (!done) { struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = sizeof(event.ctrl); rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) continue; char* response_data = NULL; uint32_t response_length = 0; struct usb_qualifier_descriptor qual; if (event.ctrl.bRequestType & USB_DIR_IN) { if (!lookup_connect_response_in(fd, descs, &event.ctrl, &qual, &response_data, &response_length)) { usb_raw_ep0_stall(fd); continue; } } else { if (!lookup_connect_response_out(fd, descs, &event.ctrl, &done)) { usb_raw_ep0_stall(fd); continue; } response_data = NULL; response_length = event.ctrl.wLength; } if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD && event.ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { rv = configure_device(fd); if (rv < 0) { return rv; } } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if (event.ctrl.bRequestType & USB_DIR_IN) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } } sleep_ms(200); return fd; } static volatile long syz_usb_connect(volatile long a0, volatile long a1, volatile long a2, volatile long a3) { uint64_t speed = a0; uint64_t dev_len = a1; const char* dev = (const char*)a2; const struct vusb_connect_descriptors* descs = (const struct vusb_connect_descriptors*)a3; return syz_usb_connect_impl(speed, dev_len, dev, descs, &lookup_connect_response_out_generic); } static volatile long syz_usb_control_io(volatile long a0, volatile long a1, volatile long a2) { int fd = a0; const struct vusb_descriptors* descs = (const struct vusb_descriptors*)a1; const struct vusb_responses* resps = (const struct vusb_responses*)a2; struct usb_raw_control_event event; event.inner.type = 0; event.inner.length = USB_MAX_PACKET_SIZE; int rv = usb_raw_event_fetch(fd, (struct usb_raw_event*)&event); if (rv < 0) { return rv; } if (event.inner.type != USB_RAW_EVENT_CONTROL) { return -1; } char* response_data = NULL; uint32_t response_length = 0; if ((event.ctrl.bRequestType & USB_DIR_IN) && event.ctrl.wLength) { if (!lookup_control_response(descs, resps, &event.ctrl, &response_data, &response_length)) { usb_raw_ep0_stall(fd); return -1; } } else { if ((event.ctrl.bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD || event.ctrl.bRequest == USB_REQ_SET_INTERFACE) { int iface_num = event.ctrl.wIndex; int alt_set = event.ctrl.wValue; int iface_index = lookup_interface(fd, iface_num, alt_set); if (iface_index < 0) { } else { set_interface(fd, iface_index); } } response_length = event.ctrl.wLength; } struct usb_raw_ep_io_data response; response.inner.ep = 0; response.inner.flags = 0; if (response_length > sizeof(response.data)) response_length = 0; if (event.ctrl.wLength < response_length) response_length = event.ctrl.wLength; if ((event.ctrl.bRequestType & USB_DIR_IN) && !event.ctrl.wLength) { response_length = USB_MAX_PACKET_SIZE; } response.inner.length = response_length; if (response_data) memcpy(&response.data[0], response_data, response_length); else memset(&response.data[0], 0, response_length); if ((event.ctrl.bRequestType & USB_DIR_IN) && event.ctrl.wLength) { rv = usb_raw_ep0_write(fd, (struct usb_raw_ep_io*)&response); } else { rv = usb_raw_ep0_read(fd, (struct usb_raw_ep_io*)&response); } if (rv < 0) { return rv; } sleep_ms(200); return 0; } static long syz_genetlink_get_family_id(volatile long name, volatile long sock_arg) { int fd = sock_arg; if (fd < 0) { fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_GENERIC); if (fd == -1) { return -1; } } struct nlmsg nlmsg_tmp; int ret = netlink_query_family_id(&nlmsg_tmp, fd, (char*)name, false); if ((int)sock_arg < 0) close(fd); if (ret < 0) { return -1; } return ret; } #define FS_IOC_SETFLAGS _IOW('f', 2, long) static void remove_dir(const char* dir) { int iter = 0; DIR* dp = 0; const int umount_flags = MNT_FORCE | UMOUNT_NOFOLLOW; retry: while (umount2(dir, umount_flags) == 0) { } dp = opendir(dir); if (dp == NULL) { if (errno == EMFILE) { exit(1); } exit(1); } struct dirent* ep = 0; while ((ep = readdir(dp))) { if (strcmp(ep->d_name, ".") == 0 || strcmp(ep->d_name, "..") == 0) continue; char filename[FILENAME_MAX]; snprintf(filename, sizeof(filename), "%s/%s", dir, ep->d_name); while (umount2(filename, umount_flags) == 0) { } struct stat st; if (lstat(filename, &st)) exit(1); if (S_ISDIR(st.st_mode)) { remove_dir(filename); continue; } int i; for (i = 0;; i++) { if (unlink(filename) == 0) break; if (errno == EPERM) { int fd = open(filename, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno != EBUSY || i > 100) exit(1); if (umount2(filename, umount_flags)) exit(1); } } closedir(dp); for (int i = 0;; i++) { if (rmdir(dir) == 0) break; if (i < 100) { if (errno == EPERM) { int fd = open(dir, O_RDONLY); if (fd != -1) { long flags = 0; if (ioctl(fd, FS_IOC_SETFLAGS, &flags) == 0) { } close(fd); continue; } } if (errno == EROFS) { break; } if (errno == EBUSY) { if (umount2(dir, umount_flags)) exit(1); continue; } if (errno == ENOTEMPTY) { if (iter < 100) { iter++; goto retry; } } } exit(1); } } static void kill_and_wait(int pid, int* status) { kill(-pid, SIGKILL); kill(pid, SIGKILL); for (int i = 0; i < 100; i++) { if (waitpid(-1, status, WNOHANG | __WALL) == pid) return; usleep(1000); } DIR* dir = opendir("/sys/fs/fuse/connections"); if (dir) { for (;;) { struct dirent* ent = readdir(dir); if (!ent) break; if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) continue; char abort[300]; snprintf(abort, sizeof(abort), "/sys/fs/fuse/connections/%s/abort", ent->d_name); int fd = open(abort, O_WRONLY); if (fd == -1) { continue; } if (write(fd, abort, 1) < 0) { } close(fd); } closedir(dir); } else { } while (waitpid(-1, status, __WALL) != pid) { } } static void setup_test() { prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); setpgrp(); write_file("/proc/self/oom_score_adj", "1000"); if (symlink("/dev/binderfs", "./binderfs")) { } } static void setup_sysctl() { int cad_pid = fork(); if (cad_pid < 0) exit(1); if (cad_pid == 0) { for (;;) sleep(100); } char tmppid[32]; snprintf(tmppid, sizeof(tmppid), "%d", cad_pid); struct { const char* name; const char* data; } files[] = { {"/sys/kernel/debug/x86/nmi_longest_ns", "10000000000"}, {"/proc/sys/kernel/hung_task_check_interval_secs", "20"}, {"/proc/sys/net/core/bpf_jit_kallsyms", "1"}, {"/proc/sys/net/core/bpf_jit_harden", "0"}, {"/proc/sys/kernel/kptr_restrict", "0"}, {"/proc/sys/kernel/softlockup_all_cpu_backtrace", "1"}, {"/proc/sys/fs/mount-max", "100"}, {"/proc/sys/vm/oom_dump_tasks", "0"}, {"/proc/sys/debug/exception-trace", "0"}, {"/proc/sys/kernel/printk", "7 4 1 3"}, {"/proc/sys/kernel/keys/gc_delay", "1"}, {"/proc/sys/vm/oom_kill_allocating_task", "1"}, {"/proc/sys/kernel/ctrl-alt-del", "0"}, {"/proc/sys/kernel/cad_pid", tmppid}, }; for (size_t i = 0; i < sizeof(files) / sizeof(files[0]); i++) { if (!write_file(files[i].name, files[i].data)) { } } kill(cad_pid, SIGKILL); while (waitpid(cad_pid, NULL, 0) != cad_pid) ; } struct thread_t { int created, call; event_t ready, done; }; static struct thread_t threads[16]; static void execute_call(int call); static int running; static void* thr(void* arg) { struct thread_t* th = (struct thread_t*)arg; for (;;) { event_wait(&th->ready); event_reset(&th->ready); execute_call(th->call); __atomic_fetch_sub(&running, 1, __ATOMIC_RELAXED); event_set(&th->done); } return 0; } static void execute_one(void) { if (write(1, "executing program\n", sizeof("executing program\n") - 1)) { } int i, call, thread; for (call = 0; call < 17; call++) { for (thread = 0; thread < (int)(sizeof(threads) / sizeof(threads[0])); thread++) { struct thread_t* th = &threads[thread]; if (!th->created) { th->created = 1; event_init(&th->ready); event_init(&th->done); event_set(&th->done); thread_start(thr, th); } if (!event_isset(&th->done)) continue; event_reset(&th->done); th->call = call; __atomic_fetch_add(&running, 1, __ATOMIC_RELAXED); event_set(&th->ready); event_timedwait(&th->done, 50 + (call == 1 ? 3000 : 0) + (call == 2 ? 300 : 0) + (call == 3 ? 300 : 0) + (call == 4 ? 300 : 0) + (call == 5 ? 300 : 0) + (call == 6 ? 300 : 0) + (call == 7 ? 300 : 0) + (call == 8 ? 300 : 0) + (call == 9 ? 300 : 0) + (call == 10 ? 300 : 0) + (call == 11 ? 300 : 0) + (call == 12 ? 300 : 0)); break; } } for (i = 0; i < 100 && __atomic_load_n(&running, __ATOMIC_RELAXED); i++) sleep_ms(1); } static void execute_one(void); #define WAIT_FLAGS __WALL static void loop(void) { int iter = 0; for (;; iter++) { char cwdbuf[32]; sprintf(cwdbuf, "./%d", iter); if (mkdir(cwdbuf, 0777)) exit(1); int pid = fork(); if (pid < 0) exit(1); if (pid == 0) { if (chdir(cwdbuf)) exit(1); setup_test(); execute_one(); exit(0); } int status = 0; uint64_t start = current_time_ms(); for (;;) { sleep_ms(10); if (waitpid(-1, &status, WNOHANG | WAIT_FLAGS) == pid) break; if (current_time_ms() - start < 5000) continue; kill_and_wait(pid, &status); break; } remove_dir(cwdbuf); } } uint64_t r[2] = {0xffffffffffffffff, 0xffffffffffffffff}; void execute_call(int call) { intptr_t res = 0; switch (call) { case 0: // openat$rnullb arguments: [ // fd: const = 0xffffffffffffff9c (8 bytes) // file: nil // flags: open_flags = 0x60a00 (4 bytes) // mode: const = 0x0 (2 bytes) // ] // returns fd_block syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0ul, /*flags=O_TRUNC|O_NONBLOCK|O_NOFOLLOW|O_NOATIME*/ 0x60a00, /*mode=*/0); break; case 1: // syz_usb_connect$rtl8150 arguments: [ // speed: usb_device_speed = 0x3 (8 bytes) // dev_len: len = 0x3f (8 bytes) // dev: ptr[in, usb_device_descriptor_rtl8150] { // usb_device_descriptor_rtl8150 { // inner: usb_device_descriptor_verbose_t[const[0x200, int16], // USB_CLASS_VENDOR_SPEC, USB_SUBCLASS_VENDOR_SPEC, 0xff, const[64, // int8], 0xbda, 0x8150, 0, array[usb_config_descriptor_rtl8150, 1]] // { // bLength: const = 0x12 (1 bytes) // bDescriptorType: const = 0x1 (1 bytes) // bcdUSB: const = 0x200 (2 bytes) // bDeviceClass: const = 0xff (1 bytes) // bDeviceSubClass: const = 0xff (1 bytes) // bDeviceProtocol: const = 0xff (1 bytes) // bMaxPacketSize0: const = 0x40 (1 bytes) // idVendor: const = 0xbda (2 bytes) // idProduct: const = 0x8150 (2 bytes) // bcdDevice: const = 0x0 (2 bytes) // iManufacturer: const = 0x1 (1 bytes) // iProduct: const = 0x2 (1 bytes) // iSerialNumber: const = 0x3 (1 bytes) // bNumConfigurations: len = 0x1 (1 bytes) // configs: array[usb_config_descriptor_rtl8150] { // usb_config_descriptor_rtl8150 { // inner: usb_config_descriptor_verbose_t[const[1, int8], // const[1, int8], const[0, int8], const[USB_CONFIG_ATT_ONE, // int8], const[250, int8], usb_interface_descriptor_rtl8150] { // bLength: const = 0x9 (1 bytes) // bDescriptorType: const = 0x2 (1 bytes) // wTotalLength: len = 0x2d (2 bytes) // bNumInterfaces: const = 0x1 (1 bytes) // bConfigurationValue: const = 0x1 (1 bytes) // iConfiguration: const = 0x0 (1 bytes) // bmAttributes: const = 0x80 (1 bytes) // bMaxPower: const = 0xfa (1 bytes) // interfaces: usb_interface_descriptor_rtl8150 { // iface: usb_interface_descriptor_verbose_t[const[0, // int8], const[0, int8], const[3, int8], // const[USB_CLASS_VENDOR_SPEC, int8], const[0, int8], // const[0, int8], const[0, int8], void, // usb_endpoint_descriptors_rtl8150] { // bLength: const = 0x9 (1 bytes) // bDescriptorType: const = 0x4 (1 bytes) // bInterfaceNumber: const = 0x0 (1 bytes) // bAlternateSetting: const = 0x0 (1 bytes) // bNumEndpoints: const = 0x3 (1 bytes) // bInterfaceClass: const = 0xff (1 bytes) // bInterfaceSubClass: const = 0x0 (1 bytes) // bInterfaceProtocol: const = 0x0 (1 bytes) // iInterface: const = 0x0 (1 bytes) // extra: buffer: {} (length 0x0) // endpoints: usb_endpoint_descriptors_rtl8150 { // bulk_in: // usb_endpoint_descriptor_verbose_t[const[USB_FIXED_ENDPOINT_BULK_IN_ADDR, // int8], const[USB_ENDPOINT_BULK_ATTR, int8], // const[512, int16], const[0, int8], const[0, int8], // const[0, int8], void] { // bLength: const = 0x9 (1 bytes) // bDescriptorType: const = 0x5 (1 bytes) // bEndpointAddress: const = 0x81 (1 bytes) // bmAttributes: const = 0x2 (1 bytes) // wMaxPacketSize: const = 0x200 (2 bytes) // bInterval: const = 0x0 (1 bytes) // bRefresh: const = 0x0 (1 bytes) // bSynchAddress: const = 0x0 (1 bytes) // extra: buffer: {} (length 0x0) // } // bulk_out: // usb_endpoint_descriptor_verbose_t[const[USB_FIXED_ENDPOINT_BULK_OUT_ADDR, // int8], const[USB_ENDPOINT_BULK_ATTR, int8], // const[512, int16], const[0, int8], const[0, int8], // const[0, int8], void] { // bLength: const = 0x9 (1 bytes) // bDescriptorType: const = 0x5 (1 bytes) // bEndpointAddress: const = 0x2 (1 bytes) // bmAttributes: const = 0x2 (1 bytes) // wMaxPacketSize: const = 0x200 (2 bytes) // bInterval: const = 0x0 (1 bytes) // bRefresh: const = 0x0 (1 bytes) // bSynchAddress: const = 0x0 (1 bytes) // extra: buffer: {} (length 0x0) // } // int_in: // usb_endpoint_descriptor_verbose_t[const[USB_FIXED_ENDPOINT_INT_IN_ADDR, // int8], const[USB_ENDPOINT_INT_ATTR, int8], const[64, // int16], const[1, int8], const[0, int8], const[0, // int8], void] { // bLength: const = 0x9 (1 bytes) // bDescriptorType: const = 0x5 (1 bytes) // bEndpointAddress: const = 0x83 (1 bytes) // bmAttributes: const = 0x3 (1 bytes) // wMaxPacketSize: const = 0x40 (2 bytes) // bInterval: const = 0x1 (1 bytes) // bRefresh: const = 0x0 (1 bytes) // bSynchAddress: const = 0x0 (1 bytes) // extra: buffer: {} (length 0x0) // } // } // } // } // } // } // } // } // } // } // conn_descs: const = 0x0 (8 bytes) // ] // returns fd_usb_rtl8150 NONFAILING(*(uint8_t*)0x200000000000 = 0x12); NONFAILING(*(uint8_t*)0x200000000001 = 1); NONFAILING(*(uint16_t*)0x200000000002 = 0x200); NONFAILING(*(uint8_t*)0x200000000004 = -1); NONFAILING(*(uint8_t*)0x200000000005 = -1); NONFAILING(*(uint8_t*)0x200000000006 = -1); NONFAILING(*(uint8_t*)0x200000000007 = 0x40); NONFAILING(*(uint16_t*)0x200000000008 = 0xbda); NONFAILING(*(uint16_t*)0x20000000000a = 0x8150); NONFAILING(*(uint16_t*)0x20000000000c = 0); NONFAILING(*(uint8_t*)0x20000000000e = 1); NONFAILING(*(uint8_t*)0x20000000000f = 2); NONFAILING(*(uint8_t*)0x200000000010 = 3); NONFAILING(*(uint8_t*)0x200000000011 = 1); NONFAILING(*(uint8_t*)0x200000000012 = 9); NONFAILING(*(uint8_t*)0x200000000013 = 2); NONFAILING(*(uint16_t*)0x200000000014 = 0x2d); NONFAILING(*(uint8_t*)0x200000000016 = 1); NONFAILING(*(uint8_t*)0x200000000017 = 1); NONFAILING(*(uint8_t*)0x200000000018 = 0); NONFAILING(*(uint8_t*)0x200000000019 = 0x80); NONFAILING(*(uint8_t*)0x20000000001a = 0xfa); NONFAILING(*(uint8_t*)0x20000000001b = 9); NONFAILING(*(uint8_t*)0x20000000001c = 4); NONFAILING(*(uint8_t*)0x20000000001d = 0); NONFAILING(*(uint8_t*)0x20000000001e = 0); NONFAILING(*(uint8_t*)0x20000000001f = 3); NONFAILING(*(uint8_t*)0x200000000020 = -1); NONFAILING(*(uint8_t*)0x200000000021 = 0); NONFAILING(*(uint8_t*)0x200000000022 = 0); NONFAILING(*(uint8_t*)0x200000000023 = 0); NONFAILING(*(uint8_t*)0x200000000024 = 9); NONFAILING(*(uint8_t*)0x200000000025 = 5); NONFAILING(*(uint8_t*)0x200000000026 = 0x81); NONFAILING(*(uint8_t*)0x200000000027 = 2); NONFAILING(*(uint16_t*)0x200000000028 = 0x200); NONFAILING(*(uint8_t*)0x20000000002a = 0); NONFAILING(*(uint8_t*)0x20000000002b = 0); NONFAILING(*(uint8_t*)0x20000000002c = 0); NONFAILING(*(uint8_t*)0x20000000002d = 9); NONFAILING(*(uint8_t*)0x20000000002e = 5); NONFAILING(*(uint8_t*)0x20000000002f = 2); NONFAILING(*(uint8_t*)0x200000000030 = 2); NONFAILING(*(uint16_t*)0x200000000031 = 0x200); NONFAILING(*(uint8_t*)0x200000000033 = 0); NONFAILING(*(uint8_t*)0x200000000034 = 0); NONFAILING(*(uint8_t*)0x200000000035 = 0); NONFAILING(*(uint8_t*)0x200000000036 = 9); NONFAILING(*(uint8_t*)0x200000000037 = 5); NONFAILING(*(uint8_t*)0x200000000038 = 0x83); NONFAILING(*(uint8_t*)0x200000000039 = 3); NONFAILING(*(uint16_t*)0x20000000003a = 0x40); NONFAILING(*(uint8_t*)0x20000000003c = 1); NONFAILING(*(uint8_t*)0x20000000003d = 0); NONFAILING(*(uint8_t*)0x20000000003e = 0); res = -1; NONFAILING(res = syz_usb_connect(/*speed=USB_SPEED_HIGH*/ 3, /*dev_len=*/0x3f, /*dev=*/0x200000000000, /*conn_descs=*/0)); if (res != -1) r[0] = res; break; case 2: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 3: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: ptr[in, vusb_responses_rtl8150] { // vusb_responses_rtl8150 { // len: len = 0x2c (4 bytes) // generic: nil // USB_REQ_GET_INTERFACE: nil // USB_REQ_GET_CONFIGURATION: nil // RTL8150_REQ_GET_REGS: nil // RTL8150_REQ_SET_REGS: ptr[in, vusb_response_t[RTL8150_REQT_WRITE, // RTL8150_REQ_SET_REGS, array[int8, 0:6]]] { // vusb_response_t[RTL8150_REQT_WRITE, RTL8150_REQ_SET_REGS, // array[int8, 0:6]] { // type: const = 0x40 (1 bytes) // req: const = 0x5 (1 bytes) // len: bytesize = 0x1 (4 bytes) // data: buffer: {88} (length 0x1) // } // } // } // } // ] NONFAILING(*(uint32_t*)0x2000000005c0 = 0x2c); NONFAILING(*(uint64_t*)0x2000000005c4 = 0); NONFAILING(*(uint64_t*)0x2000000005cc = 0); NONFAILING(*(uint64_t*)0x2000000005d4 = 0); NONFAILING(*(uint64_t*)0x2000000005dc = 0); NONFAILING(*(uint64_t*)0x2000000005e4 = 0x200000000580); NONFAILING(*(uint8_t*)0x200000000580 = 0x40); NONFAILING(*(uint8_t*)0x200000000581 = 5); NONFAILING(*(uint32_t*)0x200000000582 = 1); NONFAILING(memset((void*)0x200000000586, 136, 1)); NONFAILING( syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0x2000000005c0)); break; case 4: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 5: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 6: // syz_usb_control_io arguments: [ // fd: fd_usb (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 7: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: ptr[in, vusb_responses_rtl8150] { // vusb_responses_rtl8150 { // len: len = 0x2c (4 bytes) // generic: nil // USB_REQ_GET_INTERFACE: nil // USB_REQ_GET_CONFIGURATION: nil // RTL8150_REQ_GET_REGS: nil // RTL8150_REQ_SET_REGS: ptr[in, vusb_response_t[RTL8150_REQT_WRITE, // RTL8150_REQ_SET_REGS, array[int8, 0:6]]] { // vusb_response_t[RTL8150_REQT_WRITE, RTL8150_REQ_SET_REGS, // array[int8, 0:6]] { // type: const = 0x40 (1 bytes) // req: const = 0x5 (1 bytes) // len: bytesize = 0x1 (4 bytes) // data: buffer: {a3} (length 0x1) // } // } // } // } // ] NONFAILING(*(uint32_t*)0x200000001880 = 0x2c); NONFAILING(*(uint64_t*)0x200000001884 = 0); NONFAILING(*(uint64_t*)0x20000000188c = 0); NONFAILING(*(uint64_t*)0x200000001894 = 0); NONFAILING(*(uint64_t*)0x20000000189c = 0); NONFAILING(*(uint64_t*)0x2000000018a4 = 0x200000001840); NONFAILING(*(uint8_t*)0x200000001840 = 0x40); NONFAILING(*(uint8_t*)0x200000001841 = 5); NONFAILING(*(uint32_t*)0x200000001842 = 1); NONFAILING(memset((void*)0x200000001846, 163, 1)); NONFAILING( syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0x200000001880)); break; case 8: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 9: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 10: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 11: // syz_usb_control_io arguments: [ // fd: fd_usb (resource) // descs: nil // resps: nil // ] NONFAILING(syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0)); break; case 12: // syz_usb_control_io$rtl8150 arguments: [ // fd: fd_usb_rtl8150 (resource) // descs: nil // resps: ptr[in, vusb_responses_rtl8150] { // vusb_responses_rtl8150 { // len: len = 0x2c (4 bytes) // generic: nil // USB_REQ_GET_INTERFACE: nil // USB_REQ_GET_CONFIGURATION: nil // RTL8150_REQ_GET_REGS: nil // RTL8150_REQ_SET_REGS: ptr[in, vusb_response_t[RTL8150_REQT_WRITE, // RTL8150_REQ_SET_REGS, array[int8, 0:6]]] { // vusb_response_t[RTL8150_REQT_WRITE, RTL8150_REQ_SET_REGS, // array[int8, 0:6]] { // type: const = 0x40 (1 bytes) // req: const = 0x5 (1 bytes) // len: bytesize = 0x2 (4 bytes) // data: buffer: {ed c7} (length 0x2) // } // } // } // } // ] NONFAILING(*(uint32_t*)0x200000004000 = 0x2c); NONFAILING(*(uint64_t*)0x200000004004 = 0); NONFAILING(*(uint64_t*)0x20000000400c = 0); NONFAILING(*(uint64_t*)0x200000004014 = 0); NONFAILING(*(uint64_t*)0x20000000401c = 0); NONFAILING(*(uint64_t*)0x200000004024 = 0x200000003fc0); NONFAILING(*(uint8_t*)0x200000003fc0 = 0x40); NONFAILING(*(uint8_t*)0x200000003fc1 = 5); NONFAILING(*(uint32_t*)0x200000003fc2 = 2); NONFAILING(memcpy((void*)0x200000003fc6, "\xed\xc7", 2)); NONFAILING( syz_usb_control_io(/*fd=*/r[0], /*descs=*/0, /*resps=*/0x200000004000)); break; case 13: // openat$vim2m arguments: [ // fd: const = 0xffffffffffffff9c (8 bytes) // file: nil // flags: const = 0x2 (4 bytes) // mode: const = 0x0 (2 bytes) // ] // returns fd_vim2m syscall(__NR_openat, /*fd=*/0xffffffffffffff9cul, /*file=*/0ul, /*flags=*/2, /*mode=*/0); break; case 14: // syz_genetlink_get_family_id$ethtool arguments: [ // name: nil // fd: sock_nl_generic (resource) // ] // returns genl_ethtool_family_id NONFAILING(syz_genetlink_get_family_id(/*name=*/0, /*fd=*/-1)); break; case 15: // socketpair$unix arguments: [ // domain: const = 0x1 (8 bytes) // type: unix_socket_type = 0x5 (8 bytes) // proto: const = 0x0 (4 bytes) // fds: ptr[out, unix_pair] { // unix_pair { // fd0: sock_unix (resource) // fd1: sock_unix (resource) // } // } // ] res = syscall(__NR_socketpair, /*domain=*/1ul, /*type=SOCK_SEQPACKET*/ 5ul, /*proto=*/0, /*fds=*/0x200000000180ul); if (res != -1) NONFAILING(r[1] = *(uint32_t*)0x200000000184); break; case 16: // sendmmsg$unix arguments: [ // fd: sock_unix (resource) // mmsg: ptr[in, array[send_mmsghdr_un]] { // array[send_mmsghdr_un] { // } // } // vlen: len = 0x318 (8 bytes) // f: send_flags = 0x0 (8 bytes) // ] syscall(__NR_sendmmsg, /*fd=*/r[1], /*mmsg=*/0x2000000bd000ul, /*vlen=*/0x318ul, /*f=*/0ul); break; } } int main(void) { syscall(__NR_mmap, /*addr=*/0x1ffffffff000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x200000000000ul, /*len=*/0x1000000ul, /*prot=PROT_WRITE|PROT_READ|PROT_EXEC*/ 7ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); syscall(__NR_mmap, /*addr=*/0x200001000000ul, /*len=*/0x1000ul, /*prot=*/0ul, /*flags=MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE*/ 0x32ul, /*fd=*/(intptr_t)-1, /*offset=*/0ul); setup_sysctl(); const char* reason; (void)reason; install_segv_handler(); for (procid = 0; procid < 4; procid++) { if (fork() == 0) { use_temporary_dir(); loop(); } } sleep(1000000); return 0; }